DRAFT2 VISUAL IMPACT ASSESSMENT

PROPOSED WESKUSFLEUR SUBSTATION, CAPE TOWN WESTERN CAPE PROVINCE

June 2013

Prepared for:

Lidwala Environmental and Planning Services 1121 Hertzog Street, Waverley, Pretoria

Visual Resource Management Africa cc PO Box 7233, George, 6531 Tel: +27 44876 0020/ Fax: +27 86 653 3738 Cell: +27 83 560 9911 E-Mail: steve@vrma.co.za Web: www.vrma.co.za

All intellectual property rights and copyright associated with VRM Africa's services are reserved, and project deliverables, including electronic copies of reports, maps, data, shape files and photographs, may not be modified or incorporated into subsequent reports in any form, or by any means, without the written consent of the author. Reference must be made to this report, should the results, recommendations or conclusions in this report be used in subsequent documentation. Any comments on the draft copy of the Draft Visual Impact Assessment (VIA) must be put in writing. Any recommendations, statements or conclusions drawn from, or based upon, this report, must make reference to it.

This document was completed by Silver Solutions 887 cc trading as VRM Africa, a Visual Impact Study and Mapping organisation located in George, South Africa. VRM Africa cc was appointed as an independent professional visual impact practitioner to facilitate this VIA.

This document was undertaken by the following team:

Stephen Stead	Director/ Visual Impact	APHP accredited VIA Practitioner
Heather Stead	Research/ Assistant	Bachelor of Arts
Lisa Shultz	Editing and Contrast Rating	Bachelor of Arts, Fine Art

Stephen Stead has 12 years of experience in the field of GIS mapping and 3D modelling through his work as a GIS consultant and visual impact practitioner.

Stephen Stead APHP accredited VIA Specialist

TABLE OF CONTENTS

1	INTRODUCTION	8
2 2.1 2.2 2.3	APPROACH TO STUDY TERMS OF REFERENCE SUMMARY OF VISUAL IMPACT ASSESSMENT METHODOLOGY LIMITATIONS AND ASSUMPTIONS	9 9
3 3.1 3.2 3.3	LEGISLATIVE CONTEXT APPLICABLE LAWS AND POLICIES SURROUNDING PROJECT DATA RELEVANT STANDARDS TO COMPLY WITH	13 13
4 4.1 4.2 4.3	PROJECT DESCRIPTION PROJECT JUSTIFICATION PROJECT ALTERNATIVES ACTIVITIES	15 15
5 5.1	LANDSCAPE CONTEXT	22
6	LANDSCAPE CHARACTER	
7 7.1 7.2 7.3 7.4 7.5	FINDINGS. ZONE OF VISUAL INFLUENCE (ZVI) SCENIC QUALITY RECEPTOR SENSITIVITY VISUAL RESOURCE MANAGEMENT KEY OBSERVATION POINTS	36 36 37 37
8	PRELIMINARY IMPACTS	39
U		
9	CONCLUSION	
		40
9 10 12 12.1 12.2 12.3 12.4 LOCATI	CONCLUSION	40 47 48 48 50 52 54
9 10 12 12.1 12.2 12.3 12.4	CONCLUSION	40 47 48 50 52 52 55 57 59
9 10 12 12.1 12.2 12.3 12.4 LOCATI 12.5 12.6 12.7	CONCLUSION REFERENCES ANNEXURE 1: SITE SURVEY AND VIEWSHED MAPS ALTERNATIVE 1 SITE SURVEY PHOTOGRAPHS AND VIEWSHED. ALTERNATIVE 2 SITE SURVEY PHOTOGRAPHS AND VIEWSHED. ALTERNATIVE 3 SITE SURVEY PHOTOGRAPHS AND VIEWSHED. ALTERNATIVE 4: AIS SITE SURVEY PHOTOGRAPHS AND VIEWSHED (APPROXIMATE ON) ALTERNATIVE 4: TRANSMISSION LINES SITE SURVEY PHOTOGRAPHS. ALTERNATIVE 5 SITE SURVEY PHOTOGRAPHS AND VIEWSHED. SITE SPECIFIC SURVEY POINT MAPS.	40 47 48 50 52 52 54 55 57 59 61 63
9 10 12 12.1 12.2 12.3 12.4 LOCATH 12.5 12.6 12.7 12.8 13 13.1 13.2 14	CONCLUSION	40 47 48 50 52 52 54 55 57 59 61 63 64 68
9 10 12 12.1 12.2 12.3 12.4 LOCATI 12.5 12.6 12.7 12.8 13 13.1 13.2 14 14.1 14.2 14.3 14.4 14.5	CONCLUSION	40 47 48 50 52 52 54 55 57 59 61 63 63 64 69 71 72 72
9 10 12 12.1 12.2 12.3 12.4 LOCATI 12.5 12.6 12.7 12.8 13 13.1 13.2 14 14.1 14.2 14.3 14.4	CONCLUSION	40 47 48 50 52 52 57 59 61 63 63 63 64 63 64 69 71 72 72 73

TABLE OF FIGURES

Figure 1:	Project regional locality map	8
Figure 2:	VRM process diagram	11
	Proposed layout map	
	Proposed layout map overlaid onto aerial photograph	
Figure 5:	Proposed transmission line suspension tower	18
Figure 6:	Landscape Character Map	20
Figure 7:	Nuclear-1 Duynefontein sensitivity map (Source: Arcus GIBB (Pty) Ltd. 2011)	21
	Koeberg 50m Offset Viewshed Map	
Figure 9:	Surrounding area elevation overlay onto street map	24
Figure 10:	Surrounding areas slope gradient map overlay onto street map	24
Figure 11:	Locality Koeberg Private Nature Reserve	25
Figure 12:	Google Earth Cross Section Map	27
Figure 13:	Alternatives 1 – 4 survey points Map	30
Figure 14:	Alternative 5 survey points Map	31
	Receptor Alternatives 1 - 4 Map	
	Receptor Alternative 5 Map	
	R27 receptor view west towards Alt 1, 2 and 3	
	R27 receptor view east towards Alt 4 showing existing transmission lines	
	Receptor view north from Jacobus Crescent (Melkbosstrand) towards Alt 2 and 3	
Figure 20:	View north from the beach to the west of Edward Crescent towards Alt 2	44
Figure 21.	View from Edward Crescent towards Alt 2 and 3	45
	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees	
Figure 22:		45
Figure 22: Figure 23:	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees	45 46
Figure 22: Figure 23: Figure 24: Figure 25:	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees View from isolated farmsteads toward Alt 4 transmission routed across the house to the right View from isolated farmsteads toward Alt 5 with the Sterrekus Substation in the foreground Alt 1 AIS Viewshed Map	45 46 46 49
Figure 22: Figure 23: Figure 24: Figure 25:	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees View from isolated farmsteads toward Alt 4 transmission routed across the house to the right View from isolated farmsteads toward Alt 5 with the Sterrekus Substation in the foreground	45 46 46 49
Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27:	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees View from isolated farmsteads toward Alt 4 transmission routed across the house to the right View from isolated farmsteads toward Alt 5 with the Sterrekus Substation in the foreground Alt 1 AIS Viewshed Map Alt 1 GIS Viewshed Map Alt 2 AIS Viewshed Map	45 46 46 49 49 51
Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28:	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees View from isolated farmsteads toward Alt 4 transmission routed across the house to the right View from isolated farmsteads toward Alt 5 with the Sterrekus Substation in the foreground Alt 1 AIS Viewshed Map Alt 1 GIS Viewshed Map Alt 2 AIS Viewshed Map	45 46 46 49 49 51 51
Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28: Figure 29:	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees View from isolated farmsteads toward Alt 4 transmission routed across the house to the right View from isolated farmsteads toward Alt 5 with the Sterrekus Substation in the foreground Alt 1 AIS Viewshed Map Alt 1 GIS Viewshed Map Alt 2 AIS Viewshed Map Alt 2 GIS Viewshed Map Alt 3 AIS Viewshed Map	45 46 49 49 51 51 53
Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30:	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees View from isolated farmsteads toward Alt 4 transmission routed across the house to the right View from isolated farmsteads toward Alt 5 with the Sterrekus Substation in the foreground Alt 1 AIS Viewshed Map Alt 1 GIS Viewshed Map Alt 2 GIS Viewshed Map Alt 3 AIS Viewshed Map Alt 3 GIS Viewshed Map	45 46 46 49 51 51 53 53
Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30: Figure 31:	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees View from isolated farmsteads toward Alt 4 transmission routed across the house to the right View from isolated farmsteads toward Alt 5 with the Sterrekus Substation in the foreground Alt 1 AIS Viewshed Map Alt 1 GIS Viewshed Map Alt 2 GIS Viewshed Map Alt 3 GIS Viewshed Map Alt 3 GIS Viewshed Map	45 46 49 51 51 53 53 56
Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30: Figure 31: Figure 32:	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees View from isolated farmsteads toward Alt 4 transmission routed across the house to the right View from isolated farmsteads toward Alt 5 with the Sterrekus Substation in the foreground Alt 1 AIS Viewshed Map Alt 2 GIS Viewshed Map Alt 3 GIS Viewshed Map Alt 3 GIS Viewshed Map Alt 4 AIS Viewshed Map	45 46 49 51 51 53 53 56 58
Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30: Figure 31: Figure 32: Figure 33:	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees View from isolated farmsteads toward Alt 4 transmission routed across the house to the right View from isolated farmsteads toward Alt 5 with the Sterrekus Substation in the foreground Alt 1 AIS Viewshed Map Alt 2 AIS Viewshed Map Alt 2 GIS Viewshed Map Alt 3 AIS Viewshed Map Alt 3 AIS Viewshed Map Alt 4 AIS Viewshed Map Alt 4 AIS Viewshed Map Alt 5 GIS Viewshed Map	45 46 49 51 51 53 53 58 58 58
Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30: Figure 31: Figure 31: Figure 32: Figure 33: Figure 34:	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees View from isolated farmsteads toward Alt 4 transmission routed across the house to the right View from isolated farmsteads toward Alt 5 with the Sterrekus Substation in the foreground Alt 1 AIS Viewshed Map Alt 2 AIS Viewshed Map Alt 2 GIS Viewshed Map Alt 3 AIS Viewshed Map Alt 3 GIS Viewshed Map Alt 4 AIS Viewshed Map Alt 5 GIS Viewshed Map Alt 5 GIS Viewshed Map	45 46 49 51 51 53 53 58 58 59
Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30: Figure 31: Figure 32: Figure 33: Figure 33: Figure 34: Figure 35:	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees View from isolated farmsteads toward Alt 4 transmission routed across the house to the right View from isolated farmsteads toward Alt 5 with the Sterrekus Substation in the foreground Alt 1 AIS Viewshed Map Alt 1 GIS Viewshed Map Alt 2 AIS Viewshed Map Alt 3 AIS Viewshed Map Alt 3 GIS Viewshed Map Alt 4 AIS Viewshed Map Alt 5 GIS Viewshed Map Alt 5 GIS Viewshed Map Alt 5 GIS Viewshed Map Alt 2 Survey point Map	45 46 49 51 51 53 53 58 58 59 59
Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30: Figure 30: Figure 31: Figure 32: Figure 33: Figure 34: Figure 35: Figure 36:	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees View from isolated farmsteads toward Alt 4 transmission routed across the house to the right View from isolated farmsteads toward Alt 5 with the Sterrekus Substation in the foreground Alt 1 AIS Viewshed Map Alt 2 GIS Viewshed Map Alt 2 GIS Viewshed Map Alt 3 GIS Viewshed Map Alt 4 AIS Viewshed Map Alt 5 GIS Viewshed Map Alt 5 AIS Viewshed Map Alt 5 AIS Viewshed Map Alt 5 GIS Viewshed Map Alt 3 survey point Map	45 46 49 51 51 53 53 58 58 59 59 60
Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30: Figure 30: Figure 31: Figure 32: Figure 33: Figure 34: Figure 35: Figure 36: Figure 37:	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees View from isolated farmsteads toward Alt 4 transmission routed across the house to the right View from isolated farmsteads toward Alt 5 with the Sterrekus Substation in the foreground Alt 1 AIS Viewshed Map Alt 2 GIS Viewshed Map Alt 2 GIS Viewshed Map Alt 3 AIS Viewshed Map Alt 3 GIS Viewshed Map Alt 4 AIS Viewshed Map Alt 5 GIS Viewshed Map Alt 5 AIS Viewshed Map Alt 5 AIS Viewshed Map Alt 5 GIS Viewshed Map Alt 4 Survey point Map	45 46 49 51 51 53 53 58 58 59 59 60 60
Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30: Figure 30: Figure 31: Figure 32: Figure 33: Figure 33: Figure 34: Figure 35: Figure 36: Figure 37: Figure 38:	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees View from isolated farmsteads toward Alt 4 transmission routed across the house to the right View from isolated farmsteads toward Alt 5 with the Sterrekus Substation in the foreground Alt 1 AIS Viewshed Map Alt 2 GIS Viewshed Map Alt 2 GIS Viewshed Map Alt 3 AIS Viewshed Map Alt 3 AIS Viewshed Map Alt 4 AIS Viewshed Map Alt 4 S Viewshed Map Alt 5 GIS Viewshed Map Alt 5 GIS Viewshed Map Alt 5 GIS Viewshed Map Alt 4 survey point Map	45 46 49 51 51 53 53 58 58 59 60 60 61
Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30: Figure 30: Figure 31: Figure 32: Figure 33: Figure 33: Figure 34: Figure 35: Figure 36: Figure 37: Figure 38: Figure 39:	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees View from isolated farmsteads toward Alt 4 transmission routed across the house to the right View from isolated farmsteads toward Alt 5 with the Sterrekus Substation in the foreground Alt 1 AIS Viewshed Map Alt 2 GIS Viewshed Map Alt 2 GIS Viewshed Map Alt 3 AIS Viewshed Map Alt 3 GIS Viewshed Map Alt 4 AIS Viewshed Map Alt 4 S Viewshed Map Alt 4 S Viewshed Map Alt 5 GIS Viewshed Map Alt 5 GIS Viewshed Map Alt 1 survey point Map Alt 2 survey point Map Alt 2 survey point Map Alt 4 survey point Map Alt 2 receptor point Map	45 46 49 51 51 53 53 58 58 59 60 61 61
Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30: Figure 30: Figure 31: Figure 32: Figure 33: Figure 34: Figure 35: Figure 36: Figure 37: Figure 38: Figure 39: Figure 40:	View from Mamre Road depicting partial views to Alt 5 with screening from gum trees View from isolated farmsteads toward Alt 4 transmission routed across the house to the right View from isolated farmsteads toward Alt 5 with the Sterrekus Substation in the foreground Alt 1 AIS Viewshed Map Alt 2 GIS Viewshed Map Alt 2 GIS Viewshed Map Alt 3 AIS Viewshed Map Alt 3 AIS Viewshed Map Alt 4 AIS Viewshed Map Alt 4 S Viewshed Map Alt 5 GIS Viewshed Map Alt 5 GIS Viewshed Map Alt 5 GIS Viewshed Map Alt 4 survey point Map	45 46 49 49 51 51 53 53 58 58 58 59 60 61 61 62

LIST OF TABLES

Table 1: Site visibility, Zone of Visual Influence and Exposure Table	32
Table 2: Site Scenic Quality Table	33
Table 3: Receptor Sensitivity Table	
Table 4: VRM Class and Key Observation Point Table	
Table 5: Impact Summary Table	

LIST OF ACRONYMS

GLOSSARY

Best Practicable Environmental Option (BPEO)

This is the option that provides the most benefit, or causes the least damage, to the environment as a whole, at a cost acceptable to society, in the long, as well as the short, term.

Cumulative Impact

The impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions, regardless of what agency or person undertakes such other actions. Cumulative impacts can result from individually minor, but collectively significant, actions taking place over a period of time.

Impact (visual)

A description of the effect of an aspect of a development on a specified component of the visual, aesthetic or scenic environment, within a defined time and space.

Issue (visual)

Issues are concerns related to the proposed development, generally phrased as questions, taking the form of "what will the impact of some activity be on some element of the visual, aesthetic or scenic environment?"

Key Observation Points (KOPs)

KOPs refer to receptors (people affected by the visual influence of a project) located in the most critical locations surrounding the landscape modification, who make consistent use of the views associated with the site where the landscape modifications are proposed. KOPs can either be a single point of view that an observer/evaluator uses to rate an area or panorama, or a linear view along a roadway, trail or river corridor.

Management Actions

Actions that enhance the benefits of a proposed development, or avoid, mitigate, restore or compensate for, negative impacts.

Receptors

Individuals, groups or communities who would be subject to the visual influence of a particular project.

Sense of Place

The unique quality or character of a place, whether natural, rural or urban.

Scenic Corridor

A linear geographic area that contains scenic resources, usually, but not necessarily, defined by a route.

Scoping

The process of determining the key issues, and the space and time boundaries, to be addressed in an environmental assessment.

Viewshed

The outer boundary defining a view catchment area, usually along crests and ridgelines. Similar to a watershed. This reflects the area in which, or the extent to which, the landscape modification is likely to be seen.

Visual absorption capacity (VAC)

Visual absorption capacity is defined as the ability of the receiving landscape to absorb physical changes without the wholesale transformation in its visual character and quality.

Zone of Visual Influence (ZVI)

The ZVI is defined as 'the area within which a proposed development may have an influence or effect on visual amenity.'

1 INTRODUCTION

VRM Africa was appointed by Lidwala Environmental and Planning Services on behalf of Eskom Holdings to undertake a Visual Impact Assessment (VIA) for the proposed Weskusfleur Substation Project. The proposed sites are located at the Koeberg Nuclear Power Station (Koeberg) near Melkbosstrand, 30 km north of Cape Town on the West Coast. The project locality map below indicates the proposed project site in the Western Cape Province north of Cape Town.

The proposed 400/132kV Weskusfleur Substation is proposed in the vicinity of the existing Koeberg Substation in order to:

- Improve the existing 400kV reliability
- Cater for load growth on the 132 kV network for the 20-year horizon.
- Prevent overloading of existing 400kV busbar
- Replace 30 year old technology/equipment

(Proposed Project EIA Background Information Document)

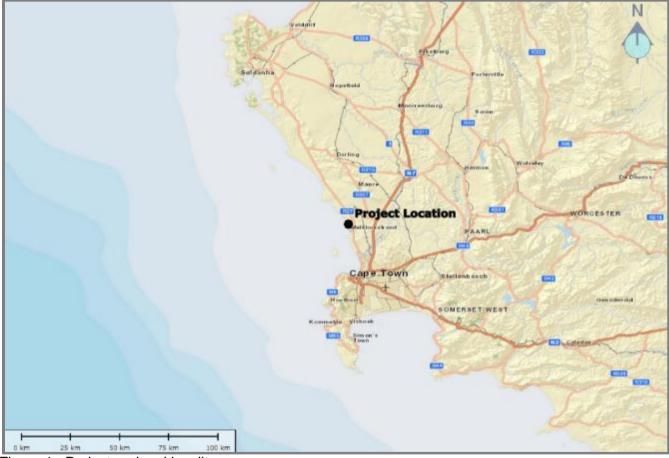


Figure 1: Project regional locality map

2 APPROACH TO STUDY

2.1 Terms of Reference

The scope of the study is to cover the entire affected project area. This includes a site visit of the full site extent, as well as where potential impacts may occur beyond the site boundaries such as cumulative impacts.

- All available secondary data relevant to the affected project area to be collated and analysed.
 - Information was sourced from the following previous studies of the area:
 - CVdV Africa. 2004. Draft Visual Scoping Report for the Construction of the Omega Electrical Substation Cape West Coast

Cumulative effects are to be considered in all impact reports.

- Specific attention is to be given to the following:
 - Quantify and assess existing scenic resources/visual characteristics on, and around, the proposed site.
 - Evaluate and classify the landscape in terms of sensitivity to a changing land use.
 - Determine viewsheds, view corridors and important viewpoints in order to assess the visual impacts of the proposed project.
 - \circ Determine visual issues, including those identified in the public participation process.
 - Review the legal framework that may have implications for visual/scenic resources.
 - Assess the significance of potential visual impacts resulting from the proposed project for the construction, operational and decommissioning phases of the project.
 - Identify possible mitigation measures to reduce negative visual impacts for inclusion into the project design, including input into the Environmental Management Plan (EMP).

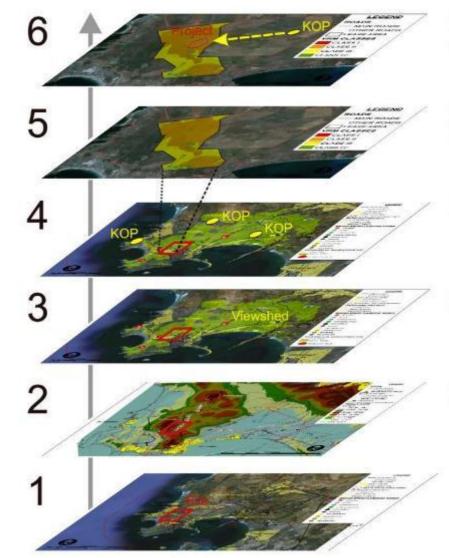
2.2 Summary of Visual Impact Assessment Methodology

The process that VRM Africa follows when undertaking a VIA is based on the United States Bureau of Land Management's (BLM) Visual Resource Management method. This mapping and GIS-based method of assessing landscape modifications allows for increased objectivity and consistency by using a standard assessment criteria and involves the measurement of contrast in the form, line, texture and colour of the proposed landscape modification brought about by a project, against the same elements found in the existing natural landscape. (*BLM. USDI. 2004*)

The first step in the VIA process is determining the existing landscape context. A regional landscape survey is undertaken, which identifies defining landscape features that surround the site of a proposed development, and sets the scene for the VIA process to follow. These features, also referred to as visual issues, are assessed for their scenic quality/worth. A VIA also assesses to what degree people, who make use of these locations (e.g. a nearby holiday resort), would be sensitive to change(s) in their views, brought about by a proposed project (e.g. a mine). (Assessment undertaken up to this point falls within the ambit of the Field Study.)

These people are referred to as receptors and are identified early on in the VIA process. Only those sensitive receptors who qualify as Key Observation Points (KOPs) by applying certain criteria, are used to measure the amount of contrast generated by changes caused by project activities, against the existing landscape (i.e. visual impact).

Visibility is sub-divided into 3 distance zones based on relative visibility from travel routes or observation points. Proximity to surrounding receptors is evaluated in terms of these distance buffers: foreground zone is less than 6km, background zone is from 6 to 24 km, and seldom seen has no receptors. Viewshed maps are generated that indicate the overall area where the project activities would be visible, and in which distance buffer zone the receptors fall.


The landscape character of the proposed project site is then surveyed to identify areas of similar land use and landscape character. These areas are evaluated in terms of scenic quality (landscape significance) and receptor sensitivity to landscape change (of the site) in order to define the visual objective for the project site. The overall objective is to maintain a landscape's integrity, but this can

be achieved at varying levels, called VRM Classes, depending on various factors, including the visual absorption capacity of a site (i.e., how much of the project would be "absorbed" or "disappear", into the landscape). The areas identified on site are categorised into these Classes by using a matrix developed by BLM Visual Resource Management, which is then represented in a visual sensitivity map. (Assessment undertaken up to this point falls within the ambit of the Baseline Study.)

The proposed project activities are then finally assessed from the KOPs around the site to see whether the visual objectives (VRM Classes) defined for the site, are met in terms of measuring the potential change to the site's form, line, colour and texture visual elements, as a result of the proposed project (i.e. are the expected changes within acceptable parameters to ensure that the visual character of the landscape is kept intact and, if not, what can be done by the project to ensure that it is). Photo montages are generated to represent the expected change in the views, as seen from each KOP and, if class objectives are not met, to also show how proposed mitigation measures could improve the same views.

Using the impact assessment method provided by the environmental consultant, each project activity is then assessed for its visual impact. This is based on the contrast rating which was undertaken from each of the surrounding receptors on whether the proposed activities meet the recommended visual objectives defined, to protect the landscape character of the area. Recommendations are made and mitigations are provided.

VISUAL RESOURCE MANAGEMENT PROCESS DIAGRAM

From each of the Key Observation Points, assess if the visual contrast generated by the proposed project is suited to the visual objective defined for each of the Classes.

Classification of the site where the project is proposed into one of four VRM Classes which define the suitability of the existing landscape to accommodate change

Identification of Key Observation Points making use of the views where the proposed project is located.

Generation of a viewshed from proposed project height to determine probable visibility to the surrounding region.

Generation of a terrain model in order to understand the lie of the land where the project is proposed.

Identification of significant features / landuses in the region which define the regional landscape character and sense of place.

Figure 2: VRM process diagram

2.3 Limitations and Assumptions

- Although every effort to maintain accuracy was undertaken, as a result of the Digital Elevation Model (DEM) being generated from satellite imagery and not being a true representation of the earth's surface, the viewshed mapping is approximate and may not represent an exact visibility incidence.
- The use of Google Earth Pro for mapping is licensed for use in this document.
- Some of the mapping in this document was created using Bing Maps (previously *Live Search Maps, Windows Live Maps, Windows Live Local, and MSN Virtual Earth*) and powered by the Bing Maps for Enterprise framework.
- The information for the terrain used in the 3D computer model on which the visibility analysis is based on is:
 - The ASTGTM_S2 3E014 and ASTGTM_S24E014 data set. ASTER GDEM is a product of METI in Japan and NASA in USA. (ASTER GDEM. METI / NASA. 2011)
- Determining visual resources is a subjective process where absolute terms are not achievable. Evaluating a landscape's visual quality is complex, as assessment of the visual landscape applies mainly qualitative standards. Therefore, subjectivity cannot be excluded in the assessment procedure (*Lange 1994*). The project deliverables, including electronic copies of reports, maps, data, shape files and photographs, are based on the author's professional knowledge, as well as available information. The study is based on assessment techniques and investigations that are limited by time and budgetary constraints applicable to the type and level of assessment undertaken. VRM Africa reserves the right to modify aspects of the project deliverables if and when new/additional information may become available from research or further work in the applicable field of practice, or pertaining to this study.
- In some areas, access was restricted and only partial views of the site could be undertaken.
- A site inspection of the Alternative 5 site was not undertaken. However, information from the CVdV Africa. 2004. Draft Visual Scoping Report for the Construction of the Omega Electrical Substation Cape West Coast was utilised to inform the scoping report.

•

'Principles that influence (development) within a receiving environment include the following:

- The need to maintain the overall integrity (or intactness) of the particular landscape or townscape;
- The need to preserve the special character or 'sense of place' of a particular area; and
- The need to minimize visual intrusion or obstruction of views within a particular area.' (*Oberholzer, B., 2005*).

3 LEGISLATIVE CONTEXT

3.1 Applicable Laws and Policies

In order to comply with the Visual Resource Management requirements, it is necessary to clarify which planning policies govern the property area to ensure that the scale, density and nature of activities or developments are harmonious and in keeping with the sense of place and character of the area. The proposed landscape modifications must be viewed in the context of the planning policies from the following organisations:

- Western Cape Provincial SDF
- DEA&DP Guideline for involving Visual and Aesthetic Specialists in EIA Processes
- City of Cape Town Draft SDF (2009)
- City of Cape Town Draft Blaauwberg Planning SDF/EMF (2009)

DEA&DP Guideline for involving Visual and Aesthetic Specialists in EIA Processes

- An awareness that 'visual' implies the full range of visual, aesthetic, cultural and spiritual aspects of the environment that contribute to the area's sense of place.
- The consideration of both the natural and the cultural landscape, and their inter-relatedness.
- The identification of all scenic resources, protected areas and sites of special interest, together with their relative importance in the region.
- An understanding of the landscape processes, including geological, vegetation and settlement patterns, which give the landscape its particular character or scenic attributes.
- The need to include both quantitative criteria, such as 'visibility', and qualitative criteria, such as aesthetic value or sense of place.
- The need to include visual input as an integral part of the project planning and design process, so that the findings and recommended mitigation measures can inform the final design, and hopefully the quality of the project.
- The need to determine the value of visual/aesthetic resources through public involvement.

City of Cape Town Draft Blaauwberg Planning SDF/EMF (2009)

- Development opportunities in Melkbosstrand include areas of residential development (market and entry-level opportunities), mixed use, and commercial opportunities on publicly-owned land.
- Proposals should also take biodiversity corridor requirements into consideration.
- Koeberg emergency planning zones: Development within the district needs to comply with the NNR regulations related to the Koeberg emergency planning zones.
- Natural open space: Guiding development away from sensitive areas and enhancing key assets (the Rietvlei, coast and conservation areas).
- Power generation and its impact on future development.

3.2 Surrounding Project Data

Environmental Impact Assessments have been completed on the following projects in the same area. This project needs to be assessed with the context of the following data:

- Arcus GIBB (Pty) Ltd (2011) *Revised* Draft Environmental Impact Assessment Report for the Eskom Nuclear Power Station and Associated Infrastructure (Nuclear-1) DEA&DP 12/12/20/944
 - Nuclear-1 Duynefontein Sensitivity Map
- Savannah Environmental (2012) Final Environmental Impact Report for the Proposed Omega-Stikland Transmission Power Lines
- Savannah Environmental (2012) Final Environmental Impact Report for the Proposed Koeberg Integration Project, Western Cape Province: Koeberg 2 – Omega Transmission Power Lines

Draft Visual Impact Assessment: June 2013

• CVdV Africa. 2004. Draft Visual Scoping Report for the Construction of the Omega Electrical Substation Cape West Coast. Eyethu Engineers.

3.3 Relevant Standards to Comply With

The International Finance Corporation (IFC) prescribes eight performance standards (PS) on environmental and social sustainability. The first is to identify and evaluate the environmental and social risks and impacts of a project, as well as to avoid, minimise or compensate for any such impacts. Under Performance Standard 6, ecosystem services are organized into four categories, with visual/aesthetic benefits falling into the category of cultural services, which are the non-material benefits people obtain from ecosystems. *(IFC. 2012)* This emotional enrichment that people experience and obtain from cultural ecosystems services is described by The Millennium Ecosystem Assessment, 2005, Ecosystems and Human Well-being: Synthesis report as follows: "Cultural ecosystems services: the non-material benefits that people obtain from ecosystems through spiritual enrichment, cognitive development, reflection, recreation, and aesthetic experiences." *(Millennium Ecosystem Assessment. 2005)*

The above includes the following, amongst others:

- Inspiration: Ecosystems provide a rich source of inspiration for art, folklore, national symbols, architecture, and advertising;
- Aesthetic values: Many people find beauty or aesthetic value in various aspects of ecosystems, as reflected in the support for parks, scenic drives, and
- Sense of place: the selection of housing locations;
 Many people value the "sense of place" that is associated with recognised features of their environment, including aspects of the
- Cultural heritage values:
 Cultural heritage instormation of either bistorically important landscapes ("cultural landscapes") or culturally significant species; and
- Recreation and ecotourism: People often choose where to spend their leisure time based in part on the characteristics of the natural or cultivated landscapes in a particular area.

The visual experience is not limited to the visual senses, but is a multisensory emotional involvement experienced by people when they perceive a specific scene, landmark, landscape, etc. The assessment subject of Visual Impact assessment (VIA) is in itself a result of human perception.

4 **PROJECT DESCRIPTION**

The objective of this section is to describe the character of the project activities and define the extent to which it will be visible to the surrounding areas. (See Figures on following pages)

4.1 **Project Justification**

The objective of this section is to describe the character of the project activities. The proposed project public EIA Background Information Document states the need and justification for the Weskusfleur Substation. In summary this includes the following points: (some of the information is confidential)

- Eskom Holdings SOC Limited initiated a study to investigate possible alternatives and solutions to address the long term reliability and improvement of the existing 400kV Gas Insulated System substation (GIS) at Koeberg Nuclear Power Station in the Western Grid. The study also included the future long term 400/132kV transformation requirements at Koeberg substation.
- Eskom Holdings SOC Limited's (Eskom) core business is the generation, transmission and distribution of electricity throughout South Africa. Electricity by its nature cannot be stored and must be used as it is generated. Therefore electricity is generated according to supplydemand requirements. Being a nuclear power station, it is vital that the reliability of the electrical infrastructure associated with this power station is never compromised. The station is also critical for grid stability in the Western Cape.
- The current 400kV GIS substation was in operation for almost 30 years and there is concerns regarding its reliability as it is difficult to repair as a result of discontinued technology. There is also no space for additional 132 kV feeder bays at Koeberg Substation to accommodate future requirements for new lines.

4.2 **Project Alternatives**

Eskom technical is currently looking at all the alternatives but the exact footprints will only be finalised at a later stage. The worst case scenario has been identified as 760m x 550m. The exact location of the substation and turn-in lines in these areas may move around still.

4.3 Activities

The proposed project requires the following activities:

- Weskusfleur Substation with 400/132kV Busbar Integration
- Turn-in Transmission Lines
- Access Roads
- Lights at Night

Substation

Construction of a new 400/132kV substation (Weskusfleur Substation) is proposed in the vicinity of the existing Koeberg Substation to:

- Improve the existing 400kV reliability
- Cater for load growth on the 132 kV network for the 20-year horizon.
- Prevent overloading of existing 400kV busbar
- Replace 30 year old technology/equipment Eskom have indicated that telecommunication masts of 60m (as a worst case scenario) will be put at substations.

Turn-in Transmission Lines

The construction of the transmission power lines leading to the Substation

Potential Access Roads

The construction of the transmission power lines may require the construction of related access roads.

Lights at Night

Lights at night would include security lighting in and around the perimetre of the proposed substation.

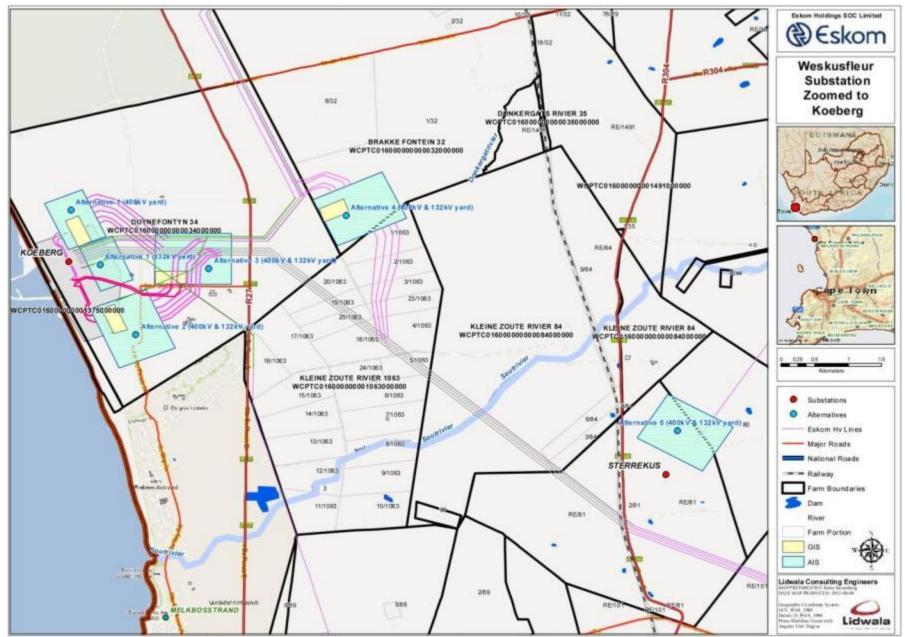


Figure 3: Proposed layout map

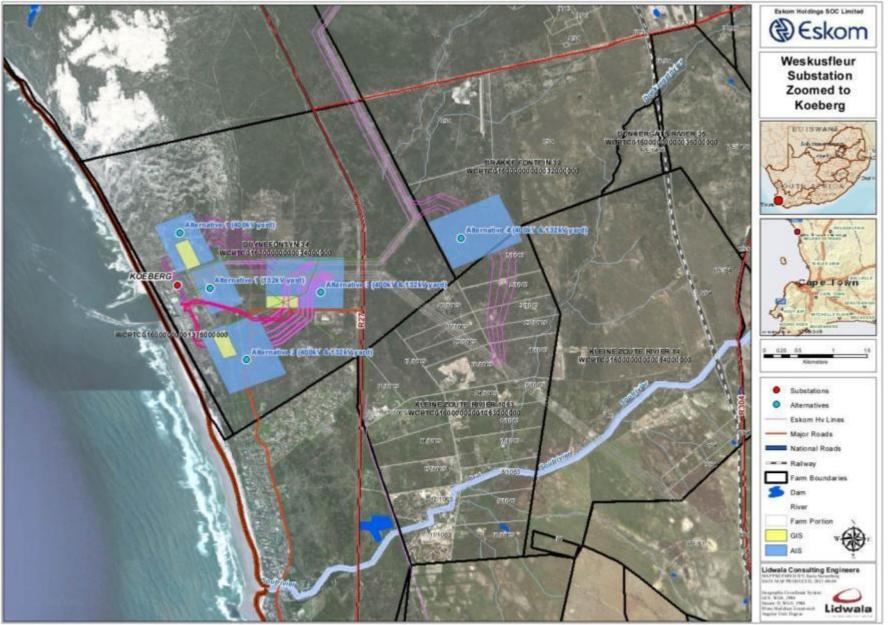


Figure 4: Proposed layout map overlaid onto aerial photograph

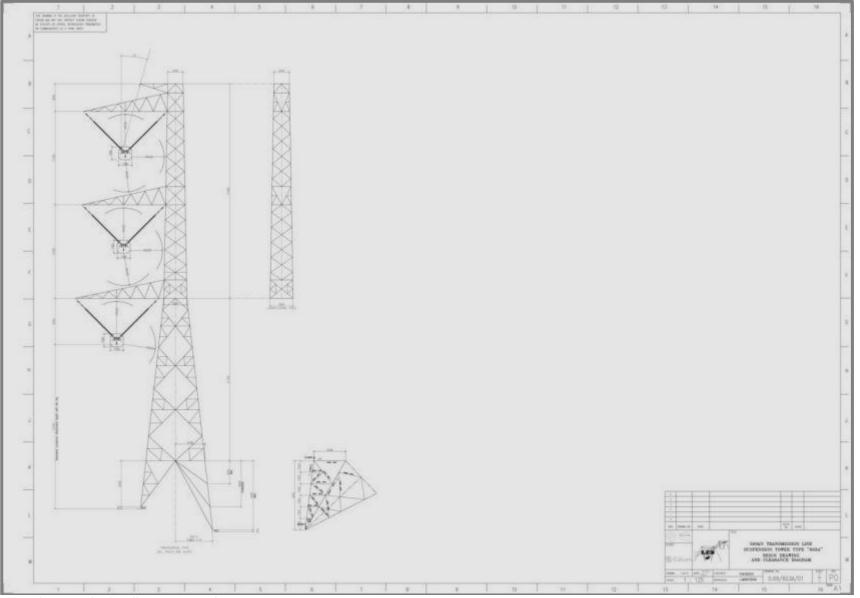


Figure 5: Proposed transmission line suspension tower

5 LANDSCAPE CONTEXT

Landscape character is defined by the U.K. Institute of Environmental Management and Assessment (IEMA) as the 'distinct and recognisable pattern of elements that occurs consistently in a particular type of landscape, and how this is perceived by people. It reflects particular combinations of geology, land form, soils, vegetation, land use and human settlement'. It creates the specific sense of place or essential character and 'spirit of the place' (*Spon Press, 2002*). The first step in the VIA process is determining the existing landscape context of the region and of the site(s) where the project is proposed.

The proposed sites are located in the City of Cape Town Metropolitan Municipality in the area adjacent to the existing Koeberg Nuclear Power Station (Koeberg) near Melkbosstrand, 30 km north of Cape Town on the West Coast. The area is bounded to the north by the West Coast District Municipality, to the north east by Cape Winelands District Municipality, to the south east by the Overberg District Municipality and to the south and west by the Atlantic Ocean. Koeberg is currently the only commercial nuclear power station in the country, and the sole commercial one in the entire African continent. Koeberg is owned and operated by the country's only national electricity supplier, Eskom. *(Savannah. 2012)*

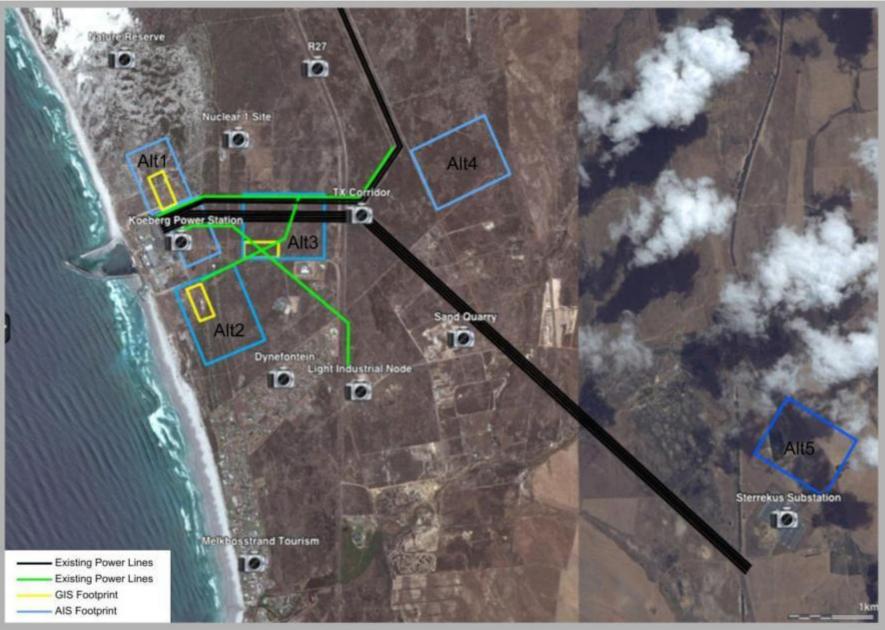
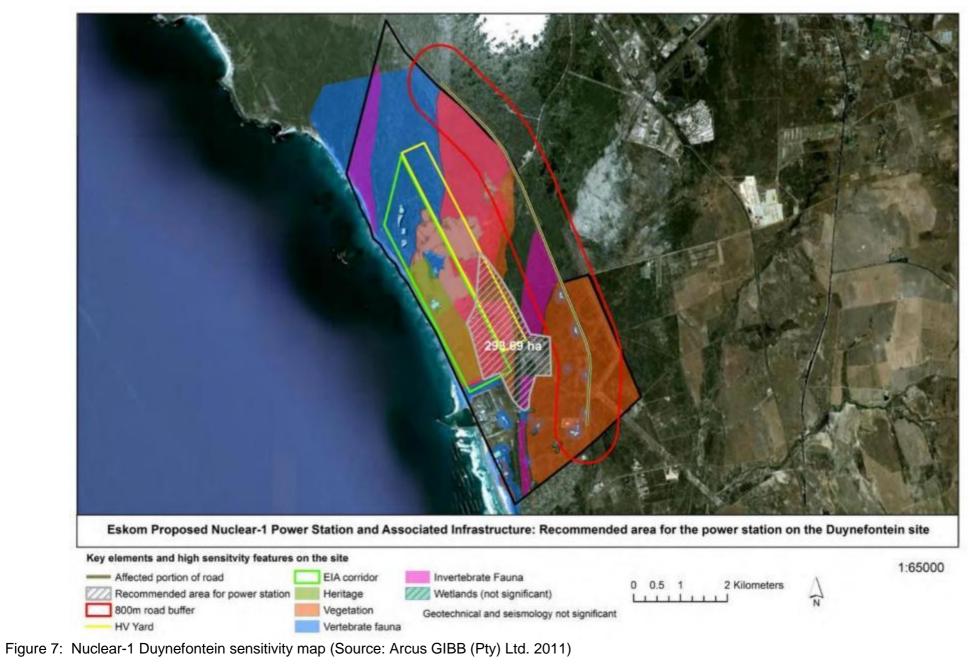



Figure 6: Landscape Character Map

PROPOSED ESKOM WESKUSFLEUR SUBSTATION

5.1 Local Landscape Context

Koeberg power station

Koeberg Nuclear Power Station (Koeberg) is operated by Eskom, the South African National power utility. Koeberg, the only nuclear power station in Africa, has a pressurised water reactor (PWR) design. It boasts the largest turbine generators in the Southern Hemisphere and is the most southerly-situated nuclear power station in the world. There are approximately 1 200 employees involved at Koeberg. Koeberg supplies approximately 6,5 % of South Africa's total electricity needs. Koeberg ranks amongst the safest of the world's top ranking PWR's of its vintage and is the most reliable Eskom power station. In March 2001, Koeberg was awarded NOSCAR status for the 5th time by the National Occupational Safety Association (NOSA). The station is also vital for grid stability in the Cape. Geologically the land itself has remained virtually unchanged for millions of years. It is due to this geological stability that Koeberg Nuclear Power station was built in this region. (*http://www.route27sa.com*) The existing Koeberg Power Station has an average height offset of 50m as can be seen in the Viewshed Map seen on the following page.

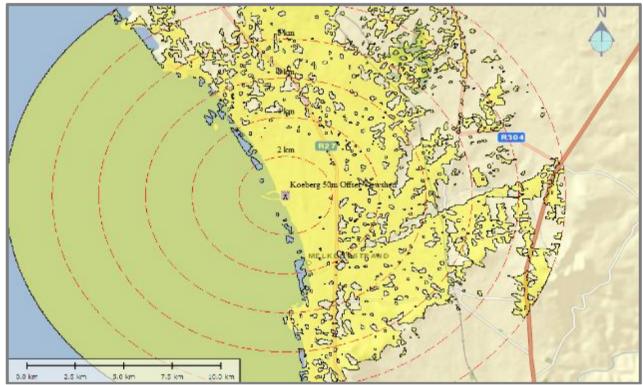


Figure 8: Koeberg 50m Offset Viewshed Map

<u>Nuclear – 1</u>

As part of its expansion programme Eskom is currently conducting a feasibility study of conventional nuclear generation in the greater Cape region, with one of the potential sites at Duynefontein adjacent to Koeberg. In order to integrate the proposed new nuclear power station into the electricity grid and to strengthen the existing Transmission network in the Western Cape Region, environmental authorisation was sought for servitudes for five 400kV transmission lines from the proposed site. It is anticipated that at some stage in the future a new nuclear power station will be established in the Koeberg region. (*Savannah. 2012*)

Melkbosstrand

Melkbosstrand is a coastal beach and village located on the South West Coast, 35 km north of Cape Town. The town and its 7 km stretch of white sand beach is situated on the Atlantic coast with the Blouberg Mountain to the east. Melkbosstrand currently falls under the City of Cape Town Metropolitan Municipality and the nearest neighbouring towns are Bloubergstrand and Atlantis. The beach is popular with surfers and tourists travelling along the R27. It is notable for being one of the landing points for the Southern Africa-Far East and South Atlantic/West Africa submarine cable systems as well as the site of the Koeberg Nuclear Power Station.

Location and Routes

The area is well utilised tourist scenic corridor. Both the "Cape to Namibia" scenic N7 and the West Coast Route 27 start off at Melkbosstrand. The N7 National route runs all along the West Coast from Cape Town in the Western Cape to the border post of Namibia at Vioolsdrif in the Northern Cape. It is a favourite and extensively used route for viewing the Namaqualand daisies between the months of June to September, depending on the rains. The R27 is the primary connector between Cape Town and the West Coast.

Other Land uses

The *Eskom Koeberg Nature Reserve*, which was proclaimed in 1991, is approximately 3000 ha in size and surrounds the Eskom Koeberg Nuclear Power Station. The reserve plays a pivotal role in the conservation of the area, especially since the development of industries and residential properties along the West Coast. A number of unique coastal landforms, wetlands and different vegetation communities are protected in the area. Strandveld is especially being threatened by the fast expanding Cape Town metropolitan area, poorly planned coastal developments, farming and mining. It is these factors that could ultimately lead to the decline and disappearance of the Strandveld. The vegetation is constantly under various pressures, such as salt spray from the sea, strong winds, wind blown sands and fluctuating temperatures. *(Eskom Koeberg Nature Reserve Information Package for Students)*

Sand quarry

Photo depicting small scale industry as seen from gravel road

Topography, Rivers and Climate

Making use the ASTGTM data set (ASTER GDEM. METI / NASA. 2011) a terrain model was generated for the area around the proposed project. (See Elevation Map below) The topography is described as predominantly *plains* and *moderately undulating plains and hills*, with a number of *low mountains* (e.g. Koeberg Hill adjacent to the N7 National Road) (*MetroGIS (Pty) Ltd. 2010*) As depicted in the map below, the terrain slopes gently from the north to the south, and has moderately undulating slopes from the west to the east.

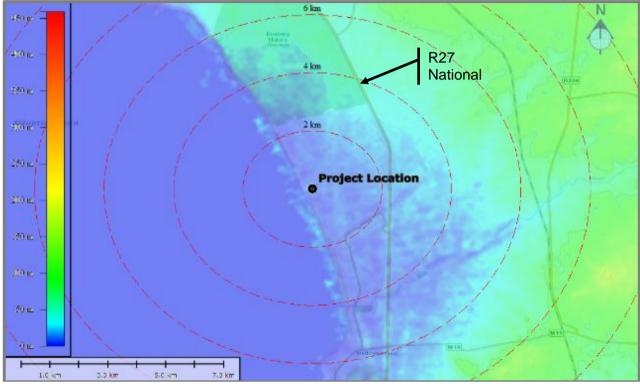


Figure 9: Surrounding area elevation overlay onto street map

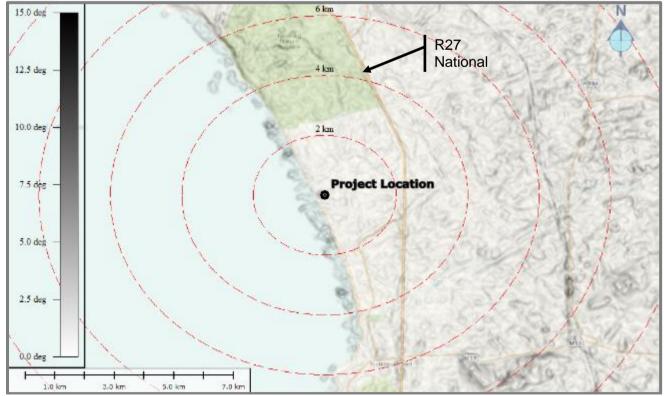


Figure 10: Surrounding areas slope gradient map overlay onto street map

Vegetation

The study area is part of the Cape Floristic Region with a very high percentage of endemic plant species and threatened plant species. The vegetation in the area is classified by Rutherford and Mucina, 2005, as Cape Flats Dune Strandveld. This is regarded as an endangered vegetation type. Much of the area, however, has been heavily or moderately disturbed by agriculture, urbanisation, too frequent fires and alien vegetation. The largest expanse of High sensitivity vegetation occurs within the grounds of the Koeberg Nature Reserve (west of the R27). (Savannah. 2012. Koeberg-Omega)

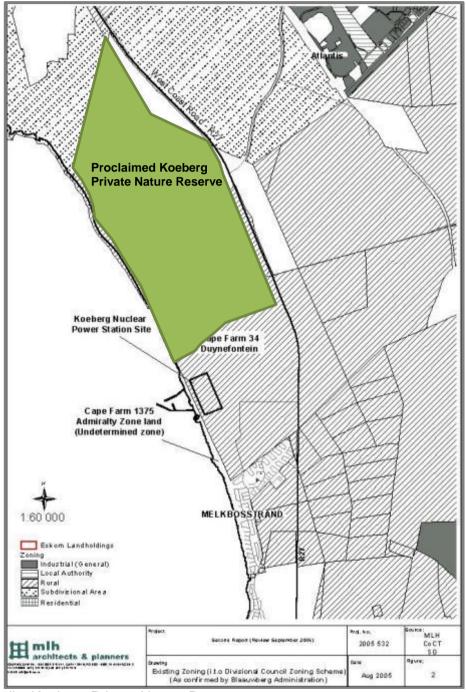
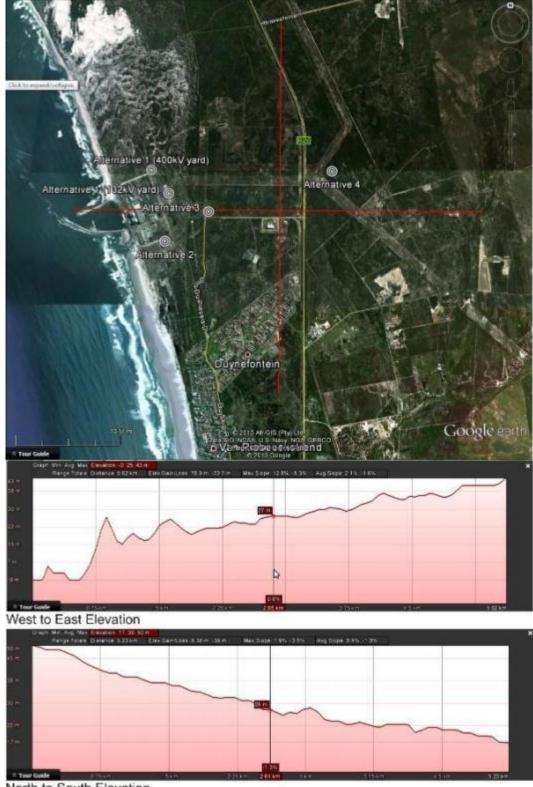
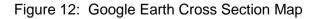


Figure 11: Locality Koeberg Private Nature Reserve

Agriculture


There are surrounging rural communities such as Kleine Zouterivier small holdings and Vaatjie Farm. The sandy soils that predominate the area have low to medium agriculatural potential due to the following:

- Excessive drainage due to sandy texture
- Low fertility due to low clay levels
- Susceptibility to wind erosion due to fine nature of the sand (Savannah. 2012. Koeberg-Omega)


PROPOSED ESKOM WESKUSFLEUR SUBSTATION

Surrounding isolated farmsteads

North to South Elevation

Landscape Value

As a result of the high levels of contrast generated by the existing power plant structure and multiple transmission line infrastructure, the area represents a highly modified landscape. The vegetation is significant as it is classified as an endangered vegetation type. Tourism is important in Melkbosstrand as the area includes many accommodation services and caters for tourists looking for cultural or sporting experiences.

6 LANDSCAPE CHARACTER

In terms of the VRM methodology, landscape character is derived from a combination of scenic quality, receptor sensitivity to landscape change, and the distance of the proposed landscape modification from key receptor points.

In terms of the VRM methodology, landscape character is derived from a combination of scenic quality, receptor sensitivity to landscape change, and distance of the proposed landscape modification from key receptor points. The scenic quality is determined using seven key factors:

- Land Form: Topography becomes more interesting as it gets steeper, or more massive, or more severely or universally sculptured.
- **Vegetation:** Primary consideration given to the variety of patterns, forms, and textures created by plant life.
- **Water:** That ingredient which adds movement or serenity to a scene. The degree to which water dominates the scene is the primary consideration.
- **Colour:** The overall colour(s) of the basic components of the landscape (e.g., soil, rock, vegetation, etc.) are considered as they appear during seasons or periods of high use.
- **Scarcity:** This factor provides an opportunity to give added importance to one, or all, of the scenic features that appear to be relatively unique or rare within one physiographic region.
- Adjacent Land Use: Degree to which scenery and distance enhance, or start to influence, the overall impression of the scenery within the rating unit.
- **Cultural Modifications:** Cultural modifications should be considered, and may detract from the scenery, or complement or improve the scenic quality, of a unit.

Sensitivity levels are a measure of public concern for scenic quality. Receptor sensitivity to landscape change is determined using the following factors:

- **Type of Users:** Visual sensitivity will vary with the type of users, e.g. recreational sightseers may be highly sensitive to any changes in visual quality, whereas workers who pass through the area on a regular basis may not be as sensitive to change.
- Amount of Use: Areas seen or used by large numbers of people are potentially more sensitive.
- **Public Interest:** The visual quality of an area may be of concern to local, or regional, groups. Indicators of this concern are usually expressed via public controversy created in response to proposed activities.
- Adjacent Land Uses: The interrelationship with land uses in adjacent lands. For example, an area within the viewshed of a residential area may be very sensitive, whereas an area surrounded by commercially developed lands may not be as visually sensitive.
- **Special Areas:** Management objectives for special areas such as Natural Areas, Wilderness Areas or Wilderness Study Areas, Wild and Scenic Rivers, Scenic Areas, Scenic Roads or Trails, and Critical Biodiversity Areas frequently require special consideration for the protection of their visual values.
- **Other Factors:** Consider any other information such as research or studies that include indicators of visual sensitivity.

The table below is utilised to define the VRM Classes that represent the relative value of the visual resources of an area:

- i. Classes I and II are the most valued
- ii. Class III represents a moderate value
- iii. Class IV is of least value

This is undertaken making use of the matrix below developed by BLM Visual Resource Management method as seen below, which is then represented in a visual sensitivity map.

			VISUAL SENSITIVITY LEVELS									
			Hig	h	Medium				Low			
	A (High)	=	Π	П	II	II	Π	II	Π	Π		
SCENIC QUALITY	B (Medium)	II	Ш	III/ IV *	Ш	IV	IV	IV	IV	IV		
	C (Low)	111	IV	IV	IV	IV	IV	IV	IV	IV		
DISTANCE ZONES			Background	seldom seen	fore/middle ground	background	seldom seen	fore/middle ground	background	seldom seen		

(A= scenic quality rating of \geq 19; B = rating of 12 – 18, C= rating of \leq 11)

* If adjacent areas are Class III or lower, assign Class III, if higher, assign Class IV

Two locations, which are associated with the various proposed project activities, were surveyed during the field study to determine scenic quality, receptor sensitivity to landscape change and distance from nearest receptors. Making use of the ASTGTM survey data, a terrain model was generated for the area around the proposed project activity and using the viewshed the receptors for each activity were identified. Key Observation Points (KOPs) are defined by the Bureau of Land Management as the people (receptors) located in strategic locations surrounding the property that make consistent use of the views associated with the site where the landscape modifications are proposed. These locations are important in terms of the VRM methodology, which requires that the Degree of Contrast (DoC) that the proposed landscape modifications will make to the existing landscape is measured from these most critical locations, or receptors, surrounding the property. The DoC generated by the proposed landscape modifications is measured against the existing landscape context in terms of the elements of form, line, colour and texture. Each alternative activity is then assessed in terms of whether it meets the objectives of the established class category, and whether mitigation is possible (USA Bureau of Land Management, 2004).

To define the KOPs, potential receptor locations were identified in the viewshed analysis, and screened, based on the following criteria:

- Angle of observation
- Number of viewers
- Length of time the project is in view
- Relative project size
- Season of use
- Critical viewpoints, e.g. views from communities, road crossings
- Distance from property

The following activities were assessed:

- Site alternative 1
- Site alternative 2
- Site alternative 3
- Site alternative 4
- Site alternative 5

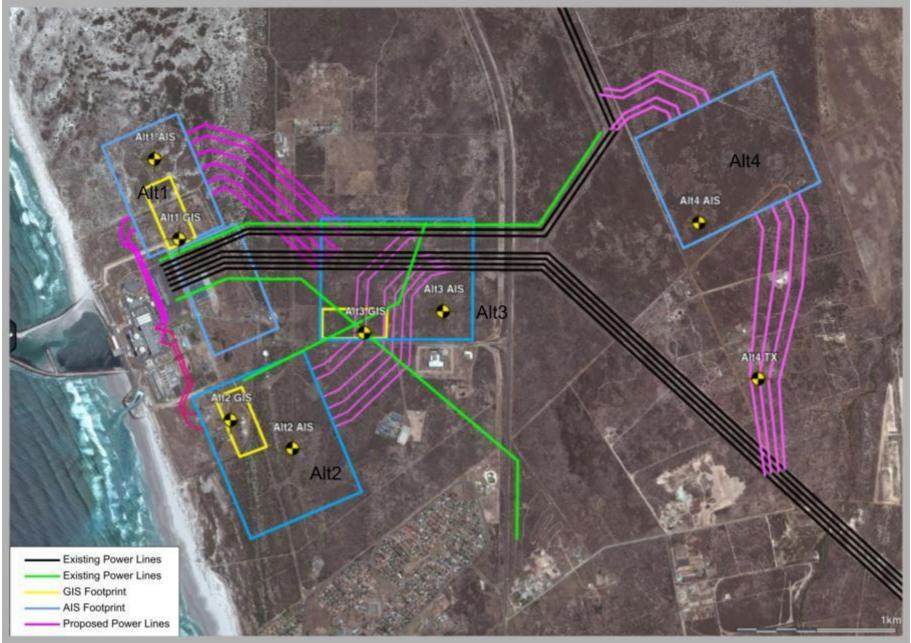


Figure 13: Alternatives 1 – 4 survey points Map

PROPOSED ESKOM WESKUSFLEUR SUBSTATION

Figure 14: Alternative 5 survey point Map

VRM AFRICA

Project component	Landuse	VAC	VIZ	ZVI	Motivation
Alternative 1 GIS	Transformed and natural vegetation, dune fields	High	Low	Low	Close proximity to existing Koeberg power station visual context and small in height and size
Alternative 1 AIS	Private nature reserve to the north and transformed lands to the south	Medium	High	Medium	Power station increases VAC but limited screening from vegetation and some raised ground on site which increases visibility.
Alternative 2 GIS	Transformed	High	Low	Low	Close proximity to existing Koeberg power station visual context and small in height and size
Alternative 2 AIS	Vacant, natural vegetation and transmission line corridor	Medium	High	High	Power station increases VAC but limited screening from vegetation and some raised ground on site which increases visibility.
Alternative 3 GIS	Vacant, natural vegetation and transmission line corridor	Medium	High	Medium	Large factory type structure and transmission line corridor offer some contrast but flat terrain and height of project twofold increase viewshed. ZVI would be moderate but would include R27 receptor
Alternative 3 AIS	Vacant, natural vegetation and transmission line corridor	Medium	High	High	Large factory type structure and transmission line corridor offer some contrast but flat terrain and height of project twofold increase viewshed. ZVI would be moderate but would include R27 receptor
Alternative 4 AIS	Vacant land dominated by alien vegetation	Low	High	Medium	Limited contrast with flat terrain. Transmission lines see through nature moderates ZVI
Alternative 4 TX	Transformed, alien vegetation	Low	High	Medium	Limited contrast with flat terrain. Transmission lines see through nature moderates ZVI
Alternative 5	Agricultural grazing lands	High	Medium	Low	Undulating terrain screens views to east, close proximity of substation and line of gum trees to west

Table 1: Site Zone of Visual Influence Table

Project component	Landform	Vegetation	Water	Colour	Adj. Scenery	Scarcity	Cultural Modif.	Total	Scenic Quality	Motivation
Alternative 1 GIS	3	2	3	2	3	3	-2	14	В	Mainly transformed but intrudes into dune fields which have high veg value, and increase the landform value.
Alternative 1 AIS	4	4	3	4	1	4	-2	16	В	High value for vegetation and colour add value to scenic quality even although close to power station context. Bulk of baseline infrastructure and TX screened for southern receptors.
Alternative 2 GIS	1	1	3	2	1	1	-2	7	С	Only value refers to sea views which is negated from close proximity to power station
Alternative 2 AIS	2	4	3	4	1	2	0	16	В	High value for vegetation and colour add value to scenic quality even although close to power station context. Bulk of baseline infrastructure and TX screened for southern receptors.
Alternative 3 GIS	2	4	1	2	1	3	-2	16	В	High value for vegetation and colour add value to scenic quality even although close to power station context.
Alternative 3 AIS	2	4	1	2	1	3	-2	16	В	High value for vegetation and colour add value to scenic quality even although close to power station context.
Alternative 4 AIS	1	1	2	2	1	2	0	9	С	Flat landscape and alien veg as well as close proximity to transmission line corridor detract from scenic quality.
Alternative 4 TX	1	1	2	2	1	2	0	9	С	Flat landscape and alien veg as well as close proximity to transmission line corridor detract from scenic quality.
Alternative 5	2	1	1	1	3	1	0	9	С	Proximity to subs and transmission line corridor but having authentic agricultural context adds value

Table 2: Site Scenic Quality Table

Project component	Exposure	Type Users	Amount of use	Public interest	Adj. land users	Special areas	Receptor sensitivity	Motivation
Alternative 1 GIS	Low	Medium	Low	Low	High	Low	Medium	Power station context
Alternative 1 AIS	Low	Medium	Low	High	High	High	High	Dune field and private res status with high heritage and vegetation significance
Alternative 2 GIS	Medium	High	Low	Low	High	Low	Medium	Power station context
Alternative 2 AIS	High	High	High	High	High	Medium	High	Open space buffer between receptor and power station is reserve which adds value to local landscape character and sense of place.
Alternative 3 GIS	High	High	High	High	High	Medium	High	Current open space on site with natural vegetation adds value to scenic quality of R27 and adds value to conservation perception of Eskom
Alternative 3 AIS	High	High	High	High	High	Medium	High	Current open space on site with natural vegetation adds value to scenic quality of R27 and adds value to conservation perception of Eskom
Alternative 4 AIS	High	High	High	Medium	Low	Low	Medium	Residential with high exposure moderated by existing transmission line corridor in close proximity
Alternative 4 TX	High	High	High	Medium	Low	Low	High	Residential with high exposure moderated by existing transmission line corridor in close proximity
Alternative 5	High	Low	Medium	Low	Medium	Low	Medium	Proximity to subs and transmission line and few receptors

Table 3: Receptor Sensitivity Table

VRM AFRICA

Project component	Visual Inventory	Visual Resource	Motivation	КОР
Alternative 1 GIS	Class III	Class III	Maintains landscape status quo for most of the site but does intrude slightly into sensitive vegetation area.	R27
Alternative 1 AIS	Class II	Class II	High value vegetation and high heritage significance	R27
Alternative 2 GIS	Class IV	Class IV	Maintains landscape status quo	Edward Crescent
Alternative 2 AIS	Class II	Class II	High value vegetation increases scenic quality. High exposure to receptors sensitive to landscape change.	Jacobs Crescent
Alternative 3 GIS	Class II	Class II	High value vegetation increases scenic quality. High exposure to receptors sensitive to landscape change.	Jacobs Crescent
Alternative 3 AIS	Class II	Class II	High value vegetation increases scenic quality. High exposure to receptors sensitive to landscape change.	R27
Alternative 4 AIS	Class IV	Class III	Low scenic quality and moderate receptor sensitivity to landscape change results in Class IV visual inventory. Graded to Class III due to proximity to R510 view corridor.	R27
Alternative 4 TX	Class III	Class III	Low scenic quality but high exposure to receptors with high sensitivity to landscape change.	Isolated farmsteads
Alternative 5	Class IV	Class III	Low scenic quality due to proximity to Sterrekus Substation with receptors moderately sensitive to landscape change. Changes to Class III to ensure that visual intrusion to surrounding rural agricultural areas is minimised.	District road and isolated farms

Table 4: VRM Class and Key Observation Point Table

7 FINDINGS

7.1 Zone of Visual Influence (ZVI)

A viewshed was generated for each of the site alternatives for 10 m height above ground level to represent the smaller structures, and 35 m above ground level to represent the larger structures and transmissions lines. The viewshed of the proposed project was overlaid onto the Koeberg Viewshed, which was generated from the Koeberg site at an averaged representative height of 50m above ground level. The viewshed maps can be seen in Figures 7 – 16 in Annexure 1.

The viewshed survey found that the viewshed of Alternatives 1, 2 & 3 mirrored the existing Koeberg viewshed, as a result of their close proximity to the existing Koeberg Power Station. Their area coverage was less than the existing Koeberg viewshed, and their proposed project zone of visual influence would not extend into new areas.

Alternative 4 is located offsite and to the east of the R27. As a result, the viewshed patterning differs from that of the Koeberg viewshed. Hence, its and the zone of visual influence would expand to small pockets to the south of the site, but only should a large structure be constructed. The existing precedent for transmission lines on the Alt 4 site is strong. Hence, new powerlines in the area will not generate high levels of visual contrast. Due to the already high levels of visual contrast generated by the existing Koeberg Power Station, it is likely that visual intrusion from a similar type of electrical landscape modification would not be percieved as visually intrusive.

Alternative 5 is also located away from the Koeberg visual complex, but is in close proximity to the existing Sterrekus substation, which already generates strong levels of visual contrast within the immediate surroundings. However, the substation infrastructure is of a diffuse nature. The site does have a precedence for large structures (like the proposed Busbar). As indicated in the viewshed analysis, the proposed structure of 40m would extend the zone of visual influence of the existing substation into agrucultural areas to the north west of the site.

The Visual Absorption Capacity is defined as the ability of the receiving landscape to absorb physical changes without the wholesale transformation in its visual character and quality. The Koeberg complex site has a hig VAC, as it is defined by large structures, many transmission lines, roads, surrounding buildings and communication towers which generate higher levels of visual contrast. The site further away has moderate VAC levels. The proposed sites viewed against the backdrop of the Koeberg complex. The only site which has low VAC levels is that of Alt4, which is fairly open and removed from large forms.

Due to the height of the proposed structures in relation to the generally flat surrounding terrain which is covered with small fynbos type vegetation, the viewshed for all sites were found to be *high* with the exception of the Alt1 GIS and Alt 5. Alt 1 GIS is topographically screened to the east and north by the surrounding dunes of medium height, and to the south by the Koeberg complex which obscures any views by southern receptors. Alt 5 is located in a shallow topographic depression with raised ground to the east and south, and a long line of gums trees which screens much of the views of the site to the west.

The Zone of Visual Influence is defined as 'the area within which a proposed development may have an influence or effect on visual amenity.' Due to the higher VAC levels created by the existing Koeberg complex, the ZVI for most sites is moderated. The exceptions are sites Alt 2 AIS and Alt 3 AIS which are located in the 'buffer' zone between the R27 and Duinefontein receptors. The buffer zone has essentially become a strong feature of the local sense of place and as such the influence fo these sites would be more strongly noticed or experienced.

7.2 Scenic Quality

Scenic quality was assessed for all sites using the VRM scenic quality criteria of landform, vegetation, water presence, colour, adjacent scenery, scarcity of the landscape within the surrounds and existing cultural modifications. These criteria were rated from 1 (low value) to 5 (high value) and then assigned a Scenic Quality category based on the total score. Due to the close proximity of either the Koeberg or Sterrekus complex, no category A landscape were defined. Alternative 1, 2 (AIS) and 3 PROPOSED ESKOM WESKUSFLEUR SUBSTATION 36

were defined Category B (Moderate) due to higher vegetation ratings which added value to colour and scarcity. Alternatives 2 (GIS), 4 and 5 were rated Category C (Low) due to the low ratings for vegetation and low ratings for adjacent scenery. Alternative 4 is covered with alien vegetation which limits colour variation, is bordered on two sides by transmission corridors and is common in the region.

7.3 Receptor Sensitivity

The receptor sensitivity to landscape changed was assessed making use of the VRM questionnaire. Criteria assessed were exposure, type of users, the amount of use, public interest, adjacent users concern for visual integrity and whether the area is zoned as special land use. Alt 1 GIS and Alt 2 GIS were rated medium due to the close proximity to the Koeberg complex. Alt 1 AIS was rated high as the site intrudes into the sensitive dune fields to the north of Koeberg in the Koeberg Private Nature Reserve. Alt 2 AIS, Alt 3 GIS and AIS were rated high due to closer proximity to the R27 and Duinefontein residential receptors where the buffer zone between the power station and the residential area has been incorporated into the local sense of place. Alt 4 AIS was rated medium due to the closer proximity to the existing two transmission corridors which have degraded the landscape character to some extent. Although Alt 5 is in close proximity to the Sterrekus substation which detracts from the landscape character, the site is surrounded by a strong agricultural sense of place. Some farmstead residential nodes located in the vicinity would increase sensitivity to landscape charage.

7.4 Visual Resource Management

In terms of the VRM methodology, landscape character is derived from a combination of scenic quality, receptor sensitivity to landscape change, and distance of the proposed landscape modification from key receptor points. The overall objective is to maintain a landscape's integrity, but this can be achieved at varying levels, called VRM Classes, depending on various factors, including the visual absorption capacity of a site (i.e., how much of the project would be "absorbed" or "disappear" into the landscape). The areas identified on site are categorised into these Classes by using a matrix from the BLM Visual Resource Management method as seen in Annexure 3, which is then represented in a visual sensitivity map

Evaluation of the suitability of a proposed landscape modification is undertaken by means of assessing the proposed modification against a predefined management objective assigned to each class. The VRM class objectives are defined as follows:

- The Class I objective is to preserve the existing character of the landscape, where the level of change to the characteristic landscape should be very low, and must not attract attention. Class I is assigned to those areas where a *specialist decision* has been made to maintain a natural landscape.
- 2. The **Class II** objective is to retain the existing character of the landscape and the level of change should be low. Management activities may be seen, but should not attract the attention of the casual observer.
- 3. The **Class III** objective is to partially retain the existing character of the landscape, where the level of change should be moderate. Management activities may attract attention, but should not dominate the view of the casual observer.
- 4. The **Class IV** objective is to provide for management activities which require major modifications of the existing character of the landscape. The level of change to the landscape can be high.

The Class II visual objective, which requires low levels of landscape change in order to protect the visual resources of the area, were defined for Alternatives 1 (AIS), 2 (AIS, 3 (AIS and GIS). Implementing the proposed project in these areas would generate high levels of visual contrast and a strong change in landscape character would be felt by the surrounding receptors. The other sites were defined as Class III and would allow for moderate levels of visual contrast, with the exception of Alternative 2 GIS which is located on transformed land in close proximity to the Koeberg power station. This site was defined as Class IV which could absorb high levels of landscape change without affecting the surrounding area's sense of place or landscape character.

7.5 Key Observation Points

The assessment of the Degree of Contrast (DoC) is a systematic process undertaken from Key Observation Points (KOPs) surrounding the project site, and is used to evaluate the potential visual impacts associated with the proposed landscape modifications. Key Observation Points (KOPs) are defined by the Bureau of Land Management as the people (receptors) located in strategic locations surrounding the property that make consistent use of the views associated with the site where the landscape modifications are proposed. These locations are important in terms of the VRM methodology, which requires that the Degree of Contrast that the proposed landscape modifications will make to the existing landscape is measured from these critical locations, or receptors, surrounding the property. *(USA Bureau of Land Management, 2004)*.

To define the KOPs, potential receptor locations were identified in the viewshed analysis, and screened, based on the following criteria:

- Angle of observation
- Number of viewers
- Length of time the project is in view
- Relative project size
- Season of use
- Critical viewpoints, e.g. views from communities, road crossings
- Distance from property

Making use of the above criteria, the following receptor locations were identified, as indicated in the maps below:

- Alt 1: R27
- Alt 2: Edward Crescent and Jacobs Crescent
- Alt 3: Jacobs Crescent and R27
- Alt 4: Farmsteads and R27
- Alt 5: Farmsteads and Mamre Road

Alternatives 1, 2 & 3 - R27 scenic route

The R27 is a national road linking Cape Town to the northern tourist and industrial area of Saldanha Port and Langebaan. It is a scenic route, used by tourists as being well as a main transport route for industry. Due to the undulating sand dunes between the receptor and site, the views of the substation as seen from this location would be screened. The views of the power lines would extend to the north but would not significantly alter the landscape character as the powerline views are already strongly established.

Alternatives 2 - Residential Dwellings in Jacobus Crescent

The view from the northern Melkbosstrand residential dwellings as seen from Jacobus Crescent indicates the open space between the residential area and the power station which has become a component of the local residential area sense of place. Changes to the landscape character would be strongly experienced.

Alternatives 2 & 3 - Edward Crescent Beach

Edward Crescent beach is halfway along the Melkbosstrand beach and the view point is located between 1 and 3km from the proposed alternative sites 1 - 4 and about 6 km from Alternative 5. It is a popular tourist and local beach.

Alternative 4 - Farmsteads

Located on the routing line for the proposed Alt 4 transmission lines are four dwellings which would be exposed to high levels of visual intrusion to the new powerline routing.

Alternative 5 - District Road

The M19 is an east-west link route between the north-south coastal routes of the R27 and the N7 to the west. Both these routes are important tourist routes and the M19 would carry tourist traffic and should be treated as a tourist view corridor. The landscape character should be protected from significant landscape change.

8 PRELIMINARY IMPACTS

Project component	Status	Extent	Duration	Magnitude
Alternative 1 GIS	-ve direct	Site	Permanent	Medium
Alternative 1 AIS	-ve direct	Regional	Permanent	High
Alternative 2 GIS	-ve indirect	Site	Permanent	Low
Alternative 2 AIS	-ve indirect	Regional	Permanent	High
Alternative 3 GIS	-ve direct	Site	Permanent	Medium - High
Alternative 3 AIS	-ve indirect	Regional	Permanent	Medium - High
Alternative 4 AIS	-ve indirect	Regional	Permanent	Medium
Alternative 4 TX	-ve direct	Site	Permanent	High
Alternative 5	-ve indirect	Regional	Permanent	Low - Medium

Table 5: Impact Summary Table

Based on the status, extent and duration of the change to the existing landscape, a preliminary visual impact magnitude was defined in order to rank the five sites in terms of risk to landscape degradation.

The *low* risk sites were Alternative 5 and Alternative 2 GIS due to their close proximity to the Sterrekus substation and Koeberg power station, which already generate high levels of visual contrast.

The impact of Alternative 4 was rated *medium* for the site and high for the transmission line. The site is degraded by close proximity to the transmission line corridors and is covered by alien vegetation. The site is flat without much visual appeal but is in closer proximity to the R27 and isolated farmsteads in the area. The Alternative 4 transmission line crosses over four dwellings and the change in landscape will be strongly experienced as the receptors would have to undergo relocation.

The impact of Alternative 1 GIS was rated *medium*. Although mostly on transformed land, the northern extent does intrude into a high sensitivity dune field area.

Alternatives 3 (AIS and GIS) were rated moderate to high as they are located on significant vegetation, are strong associated with the gateway to the Koeberg complex which is currently of interest and defined by natural vegetation surrounding the developed areas, and would be in clear view of the R27 and Duinefontein receptors who have higher sensitivity to landscape change.

Alternative 1 and 2 AIS were rated high risk to landscape character. Alternative 1 AIS intrudes significantly into the northern dune fields which have been identified by the Nuclear 1 EIA as having high environmental significance. Alternative 2 AIS is located within a high exposure area to the Duinefontein residential area where the current buffer zone from the power station has become a key aspect of the local sense of place. Landscape change in this area will be strongly felt and resisted.

9 CONCLUSION

As a result of the existing Koeberg National Power Station which has been in operation for many years, the landscape context is strongly associated with large isolated structures and numerous powerlines. The combination of the structures and infrastructure generate high levels of visual contrast which increase the visual absorption capacity of the area. Although there are important tourist activities located in the vicinity, they all exist and operate within the existing KNPS zone of visual influence. Due to the existing modified landscape context and precedent, to No-Go option should not be considered as it is likely that the proposed landscape modifications would not result in a significant change to the surrounding landscape character. However, to ensure that the landscapes utilised by existing tourist related activities and routes are not significantly degraded, it is recommended that a *full visual impact assessment* is required to address the potential change to the landscape character. The following issues need to be addressed in the impact assessment:

- Landscape Character: A detailed assessment of the landscape character of the area and each site.
- Project Description: More detail on the project description and layout once it has been provided.
- Cumulative: A cumulative impact, in relation to an activity, is the impact of an activity that may not be significant but may become significant when added to the existing and potential impacts arising from similar or other activities in the area. The possible cumulative impacts of this project will be considered as much as possible.
- Impact Assessment: The identified alternatives will be assessed in terms of the potential visual impact they could have on their surroundings.
- Photo montages to depict the change in landscape character as seen from the main tourist view corridors.

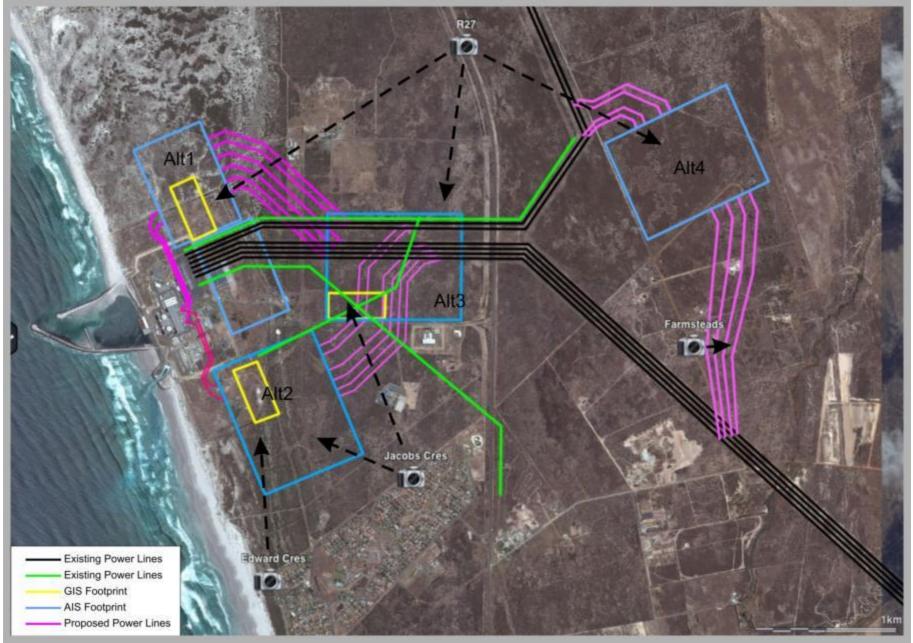


Figure 15: Receptor Alternatives 1 - 4 Map

Figure 16: Receptor Alternative 5 Map

Figure 17: R27 receptor view west towards Alt 1, 2 and 3

Figure 18: R27 receptor view east towards Alt 4 showing existing transmission lines

Figure 19: Receptor view north from Jacobus Crescent (Melkbosstrand) towards Alt 2 and 3

Figure 20: View north from the beach to the west of Edward Crescent towards Alt 2

Figure 21: View from Edward Crescent towards Alt 2 and 3

Figure 22: View from Mamre Road depicting partial views to Alt 5 with screening from gum trees

Figure 23: View from isolated farmsteads toward Alt 4 transmission routed across the house to the right

Figure 24: View from isolated farmsteads toward Alt 5 with the Sterrekus Substation in the foreground.

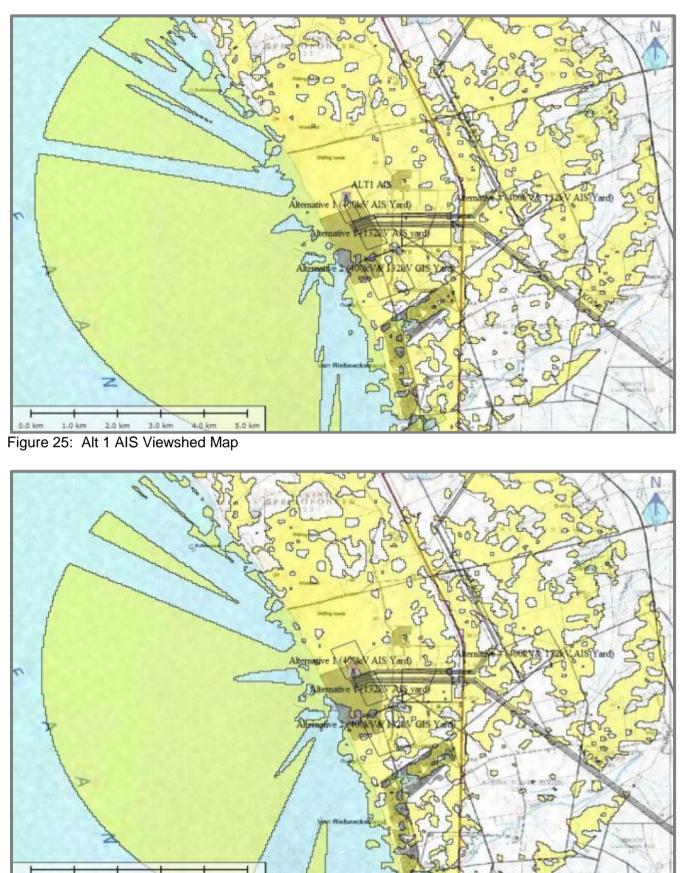
10 REFERENCES

- ASTER GDEM. METI / NASA. 2009.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model Version 2 (GDEM V2 2011). Ministry of Economy, Trade, and Industry (METI) of Japan and United States National Aeronautics and Space Administration (NASA)Source: <u>https://lpdaac.usgs.gov</u>
- 2. BLM. USDI. 2004. Bureau of Land Management, U.S. Department of Interior. 2004. Visual Resource Management Manual 8400
- 3. Council on Environmental Quality (CEQ). 1997. Considering Cumulative Effects Under the (USA) National Environmental Policy Act. http://ceq.hss.doe.gov/nepa/ccenepa/exec.pdf
- 4. Hull, R.B. and Bishop, I.E. (1988), Scenic Impacts of Electricity Transmission Mine: The Influence of Landscape Type and Observer Distance. *Journal of Environmental Management*. 1988 (27) Pg 99-108.
- 5. Lange, E. 1994: Integration of computerized visual Simulation and visual Assessment in environmental Planning. Landscape and Urban Planning.
- Oberholzer, B. 2005. Guideline for involving visual and aesthetic specialists in EIA processes: Edition 1. CSIR Report No ENV-S-C 2005 053 F. Republic of South Africa, Provincial Government of the Western Cape, Department of Environmental Affairs and Development Planning, Cape Town.
- Sheppard, S.R.J. 2005. Validity, reliability, and ethics in visualization. In: Bishop, I. & Lange, E. (Eds.) Visualization in Landscape and Environmental Planning: Technology and Applications. Taylor and Francis, London. Chapter 5, pp. 79-97. Source: www.calp.forestry.ubc.ca/Coe of Ethics_July03.pdf
- 8. U.K Institute of Environmental Management and Assessment (IEMA). 'Guidelines for Landscape and Visual Impact Assessment' Second Edition, Spon Press, 2002. Pg 44.

12 ANNEXURE 1: SITE SURVEY AND VIEWSHED MAPS

12.1 Alternative 1 Site Survey Photographs and Viewshed

View north depicting Koeberg Nature Reserve


View south depicting Koeberg car park

View east depicting Powerline corridor

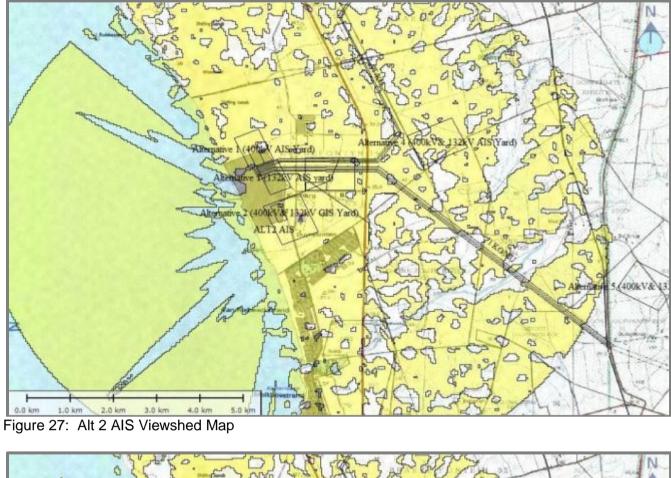

View west depicting Atlantic Ocean

1.0 km 2.0 km 4.0 km 5.0,k 0.0 km Figure 26: Alt 1 GIS Viewshed Map

3.0 Rm.

12.2 Alternative 2 Site Survey Photographs and Viewshed

View north depicting Koeberg Road and natural vegetation in foreground. Transmission line corridor in middleground and dunes in background.


View east depicting natural vegetation in foreground going to dune in middleground obscuring background.

View south depicting road and natural vegetation in foreground with Duinefontein Residential in middle to background.

View west depicting natural vegetation on dune in foreground obscures views to west. Communication mast and structures on top of dune.

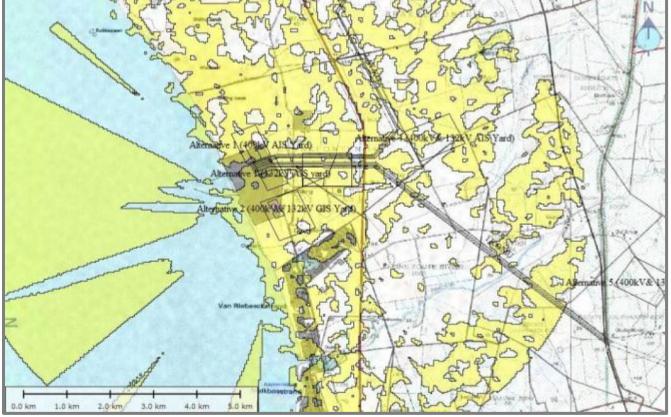


Figure 28: Alt 2 GIS Viewshed Map

12.3 Alternative 3 Site Survey Photographs and Viewshed

View north depicting natural vegetation and transmission line corridor with slight raise obscuring further views.

View east depicting natural vegetation in foreground with structure and transmission line in middleground.

View south depicting natural vegetation in foreground and middleground with Duinefontein residential in background.

View west depicting natural vegetation in foreground with power station in middleground.

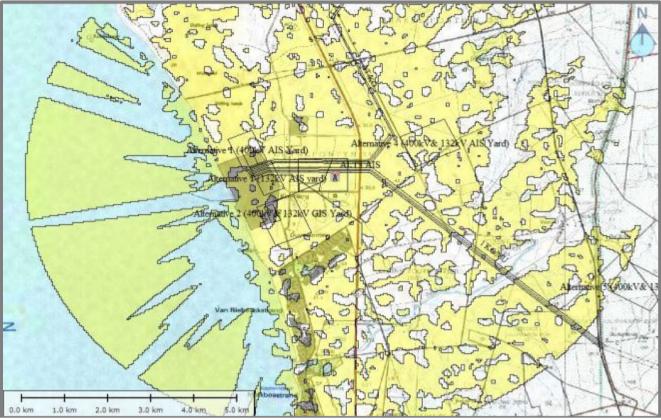


Figure 29: Alt 3 AIS Viewshed Map

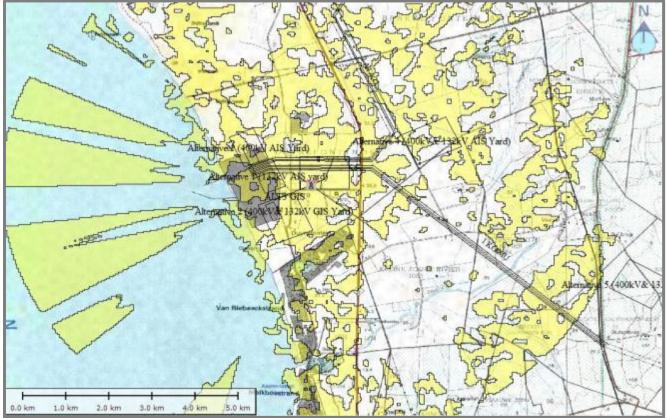


Figure 30: Alt 3 GIS Viewshed Map

12.4

View north depicting alien vegetation and small access road.

View east depicting alien vegetation and small access road.


depicting alien vegetation and small View south access road

View west depicting alien vegetation in foreground and transmission line corridor in middleground

Alternative 4: AIS Site Site Survey Photographs and Viewshed (Approximate location)

12.5 Alternative 4: Transmission Lines Site Survey Photographs

View north depicting alien vegetation and tracks.

View east depicting farmsteads and transformed lands.

View south depicting tracks through alien vegetation with transformed lands and transmission line corridor in middleground

View west depicting alien vegetation and transmission line in foreground

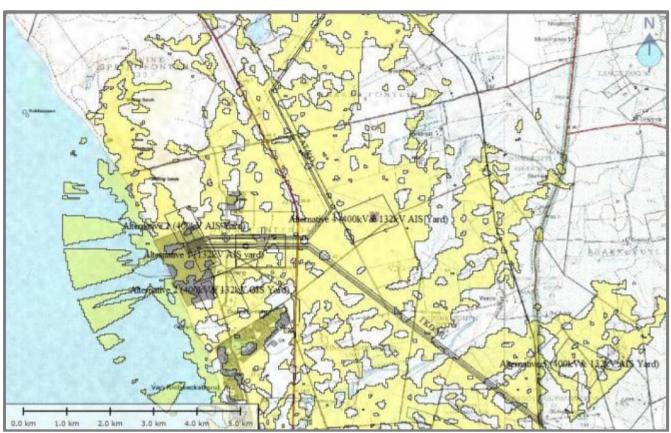


Figure 31: Alt 4 AIS Viewshed Map

12.6 Alternative 5 Site Survey Photographs and Viewshed

View north depicting agricultural fields to horizon on undulating terrain

View east depicting raised ground on small hill with agricultural field

View south depicting Sterrekus subs and transmission line corridor

View west depicting gums adjacent road and agricultural in foreground

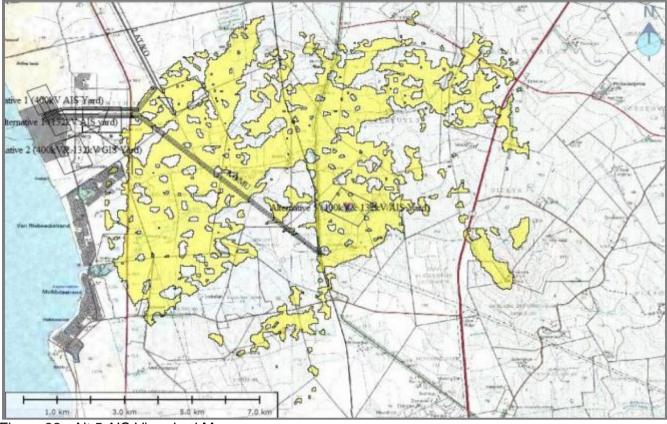


Figure 32: Alt 5 AIS Viewshed Map

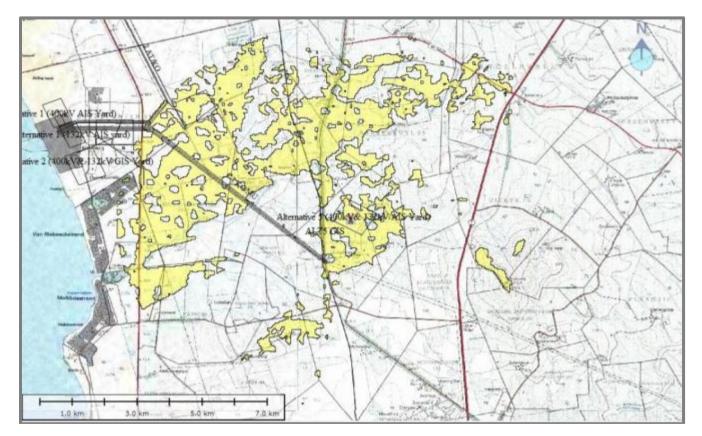


Figure 33: Alt 5 GIS Viewshed Map

12.7 Site Specific Survey Point Maps

Figure 34: Alt 1 survey point Map

Figure 35: Alt 2 survey point Map

Figure 36: Alt 3 survey point Map

Figure 37: Alt 4 survey point Map

12.8 Site Specific Receptor Point Locality Maps

Figure 38: Alt 1 receptor point Map

Figure 39: Alt 2 receptor point Map



Figure 40: Alt 3 receptor point Map

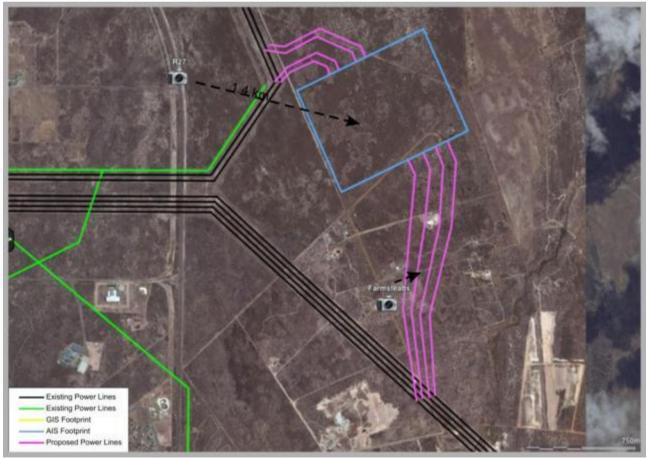


Figure 41: Alt 4 receptor point Map

13 ANNEXURE 2: SPECIALIST DETAILS

13.1 Declaration of Independence

DETAILS OF SPECIALIST AND DECLARATION OF INTEREST

Specialist:	VRM AFRICA CC					
Contact person:	STEPHEN STEAD					
Postal address:	P.O BOX 7233, BLANCO					
Postal code:	6531	Cell:	083 560 9911			
Telephone:	044 874 0020	Fax:	086 653 3738			
E-mail:	steve@vrma.co.za					
Professional affiliation(s) (if any)	Association of Professional Heritage Practitioners South Afr					

The specialist appointed in terms of the Regulations

I, STEPHEN STEAD _____, declare that ---

General declaration:

- I act as the independent specialist in this application
 I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have expertise in conducting the specialist report relevant to this application, including knowledge of the Act, regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, regulations and all other applicable legislation;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my
 possession that reasonably has or may have the potential of influencing any decision to be taken
 with respect to the application by the competent authority; and the objectivity of any report,
 plan or document to be prepared by myself for submission to the competent authority;
- all the particulars furnished by me in this form are true and correct; and
- I realise that a false declaration is an offence in terms of Regulation 71 and is punishable in terms of section 24F of the Act.

Signature of the specialist: SILVER SOLUTIONS TRADING AS VRM AFRICA

Name of company (if applicable):

23 JANUARY 2013

Date:

13.2 Curriculum Vitae

Curriculum Vitae (CV)

- 1. Position: Owner / Director
- 2. Name of Firm: Visual Resource Management Africa cc (www.vrma.co.za)
- 3. Name of Staff: Stephen Stead
- 4. Date of Birth: 9 June 1967
- 5. Nationality: South African
- 6. Contact Details: Tel: +27 (0) 44 876 0020 Cell: +27 (0) 83 560 9911 Email: steve@vrma.co.za

7. Educational qualifications:

- University of Natal (Pietermaritzburg):
- Bachelor of Arts: Psychology and Geography
- Bachelor of Arts (Hons): Human Geography and Geographic Information Management Systems

8. Professional Accreditation

- Association of Professional Heritage Practitioners (APHP) Western Cape
 - Accredited VIA practitioner member of the Association (2011)

9. Association involvement:

- International Association of Impact Assessment (IAIA) South African Affiliate
 - Past President (2012 2013)
 - o President (2012)
 - President-Elect (2011)
 - Conference Co-ordinator (2010)
 - National Executive Committee member (2009)
 - Southern Cape Chairperson (2008)

10. Conferences Attended:

- IAIAsa 2012
- IAIAsa 2011
- IAIA International 2011 (Mexico)
- IAIAsa 2010
- IAIAsa 2009
- IAIAsa 2007

11. Continued Professional Development:

- Integrating Sustainability with Environment Assessment in South Africa (IAIAsa Conference, 1 day)
- Achieving the full potential of SIA (Mexico, IAIA Conference, 2 days 2011)
- Researching and Assessing Heritage Resources Course (University of Cape Town, 5 days, 2009)

12. Countries of Work Experience:

• South Africa, Mozambique, Malawi, Lesotho, Kenya and Namibia

13. Relevant Experience:

Stephen gained six years of experience in the field of Geographic Information Systems mapping and spatial analysis working as a consultant for the KwaZulu-Natal Department of Health and then with an Environmental Impact Assessment company based in the Western Cape. In 2004 he set up the company Visual Resource Management Africa which specializes in visual resource management and visual impact assessments in Africa. The company makes use of the well documented Visual Resource Management methodology developed by the Bureau of Land Management (USA) for assessing the suitability of landscape modifications. In association with ILASA qualified landscape architect Liesel Stokes, he has assessed of over 100 major landscape modifications through-out southern and eastern

1

Africa. The business has been operating for eight years and has successfully established and retained a large client base throughout Southern Africa which include amongst other, Rio Tinto (Pty) Ltd, Bannerman (Pty) Ltd, Anglo Coal (Pty) Ltd, Eskom (Pty) Ltd, NamPower and Vale (Pty) Ltd, Ariva (Pty) Ltd, Harmony Gold (Pty) Ltd, Mellium Challenge Account (USA), Pretoria Portland Cement (Pty) Ltd

14. Languages:

- English First Language
- Afrikaans fair in speaking, reading and writing

15. Projects:

A list of **some** of the large scale projects that VRMA has assessed has been attached below with the client list indicated per project (Refer to www.vrma.co.za for a full list of projects undertaken).

YEAR	NAME	DESCRIPTIO N	CLIENT	LOCATION
2012	Afrisam Saldanha	Mine	AfriSAM	Saldana
2012	Ncondezi Power Station	Plant	Ncondezi Coal	Mozambique
2012	MET Housing Etosha Amended MCDM	Residential	Millennium Challenge	Namibia
2012	Kangnas Wind	Energy	Mainstream Renewable Power SA	N Cape
2012	Kangnas PV	Energy	Mainstream Renewable Power SA	N Cape
2012	Rossing Z20 Infrastructure Corridor	Infrastructur e	Rio Tinto	Namibia
2012	MET Housing Etosha	Housing	MET	Namibia
2012	Qwale Mineral Sands	Mine	Base Resources	Kenya
2012	Houhoek Substation	Transmission	Eskom	Western Cape
2012	Bannerman Etango Mine Phase 2	Mining	Bannerman	Namibia
2012	Letseng Diamond Transmission Line Upgrade	Powerline	Gem Diaminds	Lesotho
2012	Letseng Diamond Mine Projet Kholo	Mine	Gem Diamonds	Lesotho
2012	Drennan PV	PV		Eastern Cape
2012	George Social Infrastructure	Analysis	George Municipal Area	George
2012	Lunsklip Windfarm	Windfarm	Bergwind	Stilbaai
2012	Hoodia Solar	PV expansion		Beaufort West
2012	Bitterfontein	Energy	WEPTEAM	N Cape
2012	Bitterfontein slopes	Slopes Analysis	WEPTEAM	N Cape
2012	Knysna Affordable Housing	Residential	Knysna Municipality	Knysna
2012	KAH Hornlee Project	Residential	Knysna Municipality	Knysna
2012	Kobong Hydro	Dam / Powerline	Lesotho Highlands Water	Lesotho
2012	Otjikoto Gold Mine	Mining	ASEC	Namibia
2012	Mozambique Gas Engine Power Plant	Plant	Sasol	Mozambique
2012	SAPPI Boiler Upgrade	Plant	SAPPI	Mpumalanga
2012	Upington CSP	solar Power	Sasol	Northern Cape
2012	Rossing Z20 Mine	Mining	Rio Tinto	Namibia
2012	Eastern Cape Mari-culture	Mari-culture	Department of Agriculture, forestry and Fisheries	Western Cape
2011	Vodacom Mast	Structure	Vodacom	Reichterbosch
2011	Weldon Kaya	Residential	Private	Plettenberg Bay
2011	Hornlee	Housing	ABSA	Knysna
2011	Erongo Uranium Rush SEA	SEA	SAIEA	Namibia
2011	Damkoppie	Residential	Private	Western Cape
2011	Moquini Hotel	Structure	Costa Zeerva Developments	Western Cape
2011	Bon Accord Nickel Mine	Mine	African Nickel	Barbeton
2011	Rossing Uranium Mine Phase 2	Mining	Rio Tinto	Namibia
2011	Rossing South Board Meeting	Mining	Rio Tinto	Namibia
2011	Floating Liquified Natural Gas Facility	Structure	PetroSA	Mossel Bay
2011	Khanyisa Power Station	Power Station	Anglo Coal	Western Cape
		Industrial	РРС	Western Cape

PROPOSED ESKOM WESKUSFLEUR SUBSTATION

2011	Vale Moatize Railway 1	Mining_rail	VALE	Mozambique
2011	Vale Moatize Coal Mine	Mining_rail	VALE	Mozambique
2011	Vale Moatize Railway 2	Mining_rail	VALE	Mozambique
2011	Vale Moatize Railway 3	Mining_rail	VALE	Mozambique
2011	Vale Moatize Railway 4	Mining_rail	VALE	Mozambique
2011	Olvyn Kolk PV	Solar Power		Northern Cape
2011	Beaufort West Urban Edge	Mapping	Willem de Kock Planners	Beaufort West
2011	ERF 7288 PV	PV	Whielin de Rock Flaimers	Beaufort West
2011	Erf 7288 Beaufort West	Slopes		Beaufort West
2011		Residential	MMS Developers	Herolds Bay
	N2 Herolds Bay Residental			
2011	Southern Arterial	Road	George Municipality	George
2011	De Bakke Cell Phone Mast	Mast	Vodacom	Western Cape
2011	Ruitesbosch	Mast	Vodacom	Western Cape
2011	Wadrif Dam	Dam	Plett Municipality	Western Cape
2011	George Western Bypass	Road	George Municipal Area	George
2011	Gecko Namibia	Industrial	Vision Industrial Park	
2011	Hartenbos Quarry Extension	Mining	Onifin(Pty) Ltd	Mossel Bay
2011	Wadrif Dam	Dam	Plettenberg Municipality	Beaufort West
2011	Kathu CSP	Solar Power		Northern Cape
2011	Sasolburg CSP	Solar Power		Free State
2010	George Open Spaces System	George SDF	George Municipal Area	George
2010	Sedgefield Water Works	Structure	Knysna Municipality	Sedgefield
2010	George Visual Resource Management	George SDF	George Municipal Area	George
2010	George Municipality SDF	George SDF	George Municipal Area	George
2010	Green View Estates	Residential	<u> </u>	Mossel Bay
2010	Wolwe Eiland Access Route	Road	Theo Ciliers	Victoria Bay
2010	Asazani Zinyoka UISP Housing	Residential	Mossel Bay Municipality	Mossel Bay
2010	MTN Lattice Hub Tower	Structure	MTN	George
2010	Destiny Africa	Residential	KDFM	George
2010	Farm Dwarsweg 260	Residential	Hoogkwatier Landgoed	Great Brak
2010	Bantamsklip GIS Mapping	Mapping	Eskom	Western Cape
2010	Bantamskip Transmission Revision	Transmission	Eskom	Eastern Cape
2010	Le Grand Golf and Residential			
	Estate	Residenti	Private	George
2010	Ladywood Farm 437	Residential	Private	Plettenberg Bay
2010	Pezula Infill (Noetzie)	Residential	Pezula Golf Estate	Knysna
2010	Stonehouse Development	Residential	Private	Plettenberg Bay
2009	Eden Telecommunication Tower	Tower	Africon Engineering	George
2009	Walvis Bay Power Station	Structure	NamPower	Namibia.
2009	OCGT Power Plant Extension	Power Plant	Eskom	Mossel Bay
2009	Rossing Uranium Mine Phase 1	Mining	Rio Tinto	Namibia
2009	RUL Sulpher Handling Facility	Mining	Rio Tinto	Walvis Bay
2009	Boggomsbaai	Slopes	Private	Boggomsbaai
2009	Still Bay East	Mapping	DelPlan	SA, WC
2009	Bannerman Etango Uranium Mine	Mining	Bannerman	Namibia
2009	George Municipality Densification	George SDF	George Municipal Area	George
2009	Oudtshoorn Municipality SDF	Mapping	Oudtshoorn Municipality	Oudtshoorn
2009	Harmony Gold Mine	Mining	Harmony	Mpumalanga.
2009	Ryst Kuil/Riet Kuil Uranium Mine	Mining	Turgis	Beaufort West
2009	Trekkopje Uranium Mine	Mining	Trekkopje Uranium Mine	Namibia
2009	Calitzdorp Retirement Village	Residential	Pretorius Family Trust	Calitzdorp
2009	Wilderness Erf 2278	Residential	Albert Hanekom	Wilderness
2009	Wolwe Eiland Eco & Nature Estate	Residential	Theo Ciliers	Victoria Bay
2009	Zebra Clay Mine	Mining	Private	Zebra
2009	Fancourt Visualisation Modelling	Visualisation	Fancourt Golf Estate	George
2009	Erf 251 Damage Assessment	Residential	Private	Great Brak
2009	Lagoon Bay Lifestyle Estate	Residential	Lagoon Bay Estate	Glentana
			Dreamveldt	Great Brak
2009	Lagoon Garden Estate	Residential	1	
2009 2009	Moquini Beach Hotel	Resort	Kostas Zervas	Mossel Bay
2009			1	

2008	Trekkopje Desalination Plant	Structure	Trekkopje Uranium Mine	Namibia
2008	Hartenbos Landgoed Phase 2	Residential	Willem van Rensburg	Hartenbos
2008	Hartenbos River Park	Residential	Adlequelle	Hartenbos
2008	Hersham Security Village	Residential	Private	Great Brak
2008	Kaaimans Project	Residential	Fritz Fenter	Wilderness
2008	Kloofsig Development	Residential	Muller Murray Trust	Vleesbaai
2008	Rheebok Development Erf 252 Apeal	Residential	Farm Searles	Great Brak
2008	Riverhill Residential Estate	Residential	Theo Cilliers	Wilderness
2008	Camdeboo Estate	Resort	Private	Graaff Reinet
2008	Oasis Development	Residential	Private	Plettenberg Bay
2008	Outeniquabosch Safari Park	Residential	Private	Mossel Bay
2008	George Airport Radar Tower	Tower	ACSA	George
2008	Lakes Eco and Golf Estate	Residential	Private	Sedgefield
2008	Pinnacle Point Golf Estate	Residential	Private	Mossel Bay
2008	Paradise Coast	Residential	Private	Mossel Bay
2008	Fynboskruin Extention	Residential	Ballabarn Three	Sedgefield
2008	Gansevallei	Residential	Pieter Badenhorst	Plettenberg Bay
2008	Hanglip Golf and Residential Estate	Residential	Pieter Badenhorst	Plettenberg Bay
2008	Proposed Hotel Farm Gansevallei	Resort	Wendy Floyd Planners	Plettenberg Bay
2008	Uitzicht Development	Residential	Private	Knysna
2008	Hansmoeskraal	Slopes Analysis	Private	George
2008	Kruisfontein Infill	Mapping	SetPlan George	Knysna
2008	Mount View Tourist Distination	Mapping	SetPlan	Western Cape
2008	Welgevonden	Visualisation	SetPlan George	De Rust
2008	Pierpoint Nature Reserve	Residential	Private	Knysna
2008	West Dunes	Residential	Private	Knysna
1998	Greater Durban Informal Housing Analysis	GIS	Durban Municipality	Durban

Certification:

I confirm that the above CV is an accurate description of my experience and qualifications and that I am available to serve in the position indicated for me in the proposal for this project.

Yours faithfully,

Stephen Stead, Director

14 ANNEXURE 3: METHODOLOGY

Visual impact is defined as 'the effect of an aspect of the development on a specified component of the visual, aesthetic or scenic environment within a defined time and space.' (*Oberholzer, B., 2005*). As identified in this definition, 'landscapes are considerably more than just the visual perception of a combination of landform, vegetation cover and buildings, as they embody the history, landuse, human culture, wildlife and seasonal changes to an area.' (*U.K IEMA, 2002*). These elements combine to produce distinctive local character that will affect the way in which the landscape is valued and perceived.

VRM Africa's objective is to provide Interested and Affected Parties (I&APs) and decision-makers with sufficient information to take "early opportunities for avoidance of negative visual effects." This is based on the U.K. Institute of Environmental Management and Assessment's (IEMA), and South Africa's Western Cape Department of Environmental Affairs and Development Planning's (DEA&DP), guidelines:

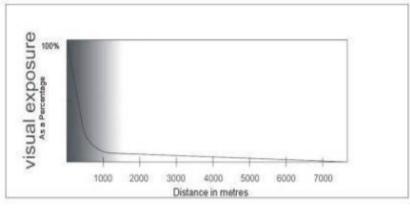
- "The ideal strategy for each identifiable, negative effect is one of avoidance. If this is not possible, alternative strategies of reduction, remediation and compensation may be explored. If the consideration of mitigation measures is left to the later stages of scheme design, this can result in increased mitigation costs because early opportunities for avoidance of negative visual effects are missed." (U.K IEMA, 2002).
- "In order to retain the visual quality and landscape character, management actions must become an essential part of the guidelines throughout construction and operation...Proper management actions ensure that the lowest possible impact is created by the project...
- Ongoing monitoring programmes, with regard to the control of aesthetic aspects, for all stages of the project, are a vital component, ensuring that the long-term visual management objectives are met." (Oberholzer, B., 2005).

The impact assessment methodology that VRM Africa uses is based on the VRM methodology developed by the United States Bureau of Land Management (BLM) in that the study involves the measurement of contrast in the form, line, texture and colour of the proposed landscape modification, against the same elements found in the natural landscape. The contrast rating is a systematic process undertaken from KOPs surrounding the project site, and the assessment of the degree of contrast (DoC) is used to evaluate the potential visual impacts associated with the proposed landscape modifications. The method is based on the premise that the degree to which a proposed landscape modification affects the visual quality of a landscape depends on the visual contrast created between a project and the existing landscape (USA Bureau of Land Management, 2004).

Landscape Significance

Landscape significance is assessed in order to highlight the nature and degree of significance of the landscape context by differentiating between those landscapes of recognized or potential significance or sensitivity to modification to those landscape contexts that have low sensitivity and scenic value. 'Different levels of scenic values require different levels of management. For example, management of an area with high scenic value might be focused on preserving the existing character of the landscape, and management of an area with little scenic value might allow for major modifications to the landscape. Determining how an area should be managed first requires an assessment of the area's scenic values. Assessing scenic values and determining visual impacts can be a subjective process. Objectivity and consistency can be greatly increased by using standard assessment criteria to describe and evaluate landscapes, and to also describe proposed projects.' *(USA Bureau of Land Management,2004)*.

Viewshed Analysis


A viewshed is 'the outer boundary defining a view catchment area, usually along crests and ridgelines' (*Oberholzer, B., 2005*). This reflects the area within which, or the extent to which, the landscape modification is likely to be seen. It is important to assess the extent to which the proposed landscape modifications are visible in the surrounding landscape, as a point of departure for defining the shared landscape context, and to identify the receptors making use of the common views. Viewshed analyses are not absolute indicators of the level of significance, but an indication of

potential visibility (*Centre for Advanced Spatial Analysis, 2002*). Once the sites and heights of the proposed activities have been finalised, the viewshed analysis will be undertaken.

Receptor Exposure

The area where a landscape modification starts to influence the landscape character is termed the Zone of Visual Influence (ZVI) and is defined by the U.K. Institute of Environmental Management and Assessment's (IEMA) *'Guidelines for Landscape and Visual Impact Assessment'* as 'the area within which a proposed development may have an influence or effect on visual amenity (of the surrounding areas).'

The inverse relationship of distance and visual impact is well recognised in visual analysis literature *(Hull, R.B. and Bishop, I.E., 1988)*. According to Hull and Bishop, exposure, or visual impact, tends to diminish exponentially with distance. The areas where most landscape modifications would be visible are located within 2 km from the site of the landscape modification. Thus the potential visual impact of an object diminishes at an exponential rate as the distance between the observer and the object increases due to atmospheric conditions prevalent at a location, which causes the air to appear greyer, thereby diminishing detail. For example, viewed from 1000 m from a landscape modification. At 2000m it would be 10% of the impact at 500 m. The relationship is indicated in the following graph generated by Hull and Bishop.

14.1 Distance Zones

The VRM methodology also takes distance from a landscape modification into consideration in terms of understanding visual resource. Three distance categories are defined by the Bureau of Land Management. The distance zones are:

- 1. *Foreground / Middle ground*, up to approximately 6km, which is where there is potential for the sense of place to change;
- 2. **Background areas**, from 6km to 24km, where there is some potential for change in the sense of place, but where change would only occur in the case of very large landscape modifications; and
- 3. **Seldom seen areas**, which fall within the Foreground / Middle ground area but, as a result of no receptors, are not viewed or are seldom viewed.

14.2 Scenic Quality

In the VRM methodology, scenic quality is a measure of the visual appeal of a tract of land. In the visual resource inventory process, public lands are given a rating based on the apparent scenic quality, which is determined using seven key factors. During the rating process, each of these factors is ranked on a comparative basis with similar features in the region *(USA Bureau of Land Management, 2004)*. These seven elements are:

- 1. Landform: Topography becomes more interesting as it gets steeper, or more massive, or more severely or universally sculptured.
- 2. **Vegetation:** Give primary consideration to the variety of patterns, forms, and textures created by plant life. Consider short-lived displays when they are known to be recurring or spectacular. Also consider smaller-scale vegetation features which add striking and intriguing detail elements to the land.

- 3. **Water:** That ingredient which adds movement or serenity to a scene. The degree to which water dominates the scene is the primary consideration.
- 4. **Colour:** Consider the overall colour(s) of the basic components of the landscape (e.g., soil, rock, vegetation, etc.) as they appear during seasons or periods of high use. Key factors to use when rating "colour" are variety, contrast and harmony.
- 5. **Scarcity:** This factor provides an opportunity to give added importance to one, or all, of the scenic features that appear to be relatively unique or rare within one physiographic region.
- Adjacent Land Use: Degree to which scenery, outside the scenery unit being rated, enhances the overall impression of the scenery within the rating unit. The distance at which adjacent scenery will start to influence scenery within the rating unit ranges, depending upon the characteristics of the topography, the vegetative cover, and other such factors.
- 7. **Cultural Modifications:** Cultural modifications in the landform, water, and vegetation, and addition of structures, should be considered, and may detract from the scenery in the form of a negative intrusion, or complement or improve the scenic quality of a unit.

<u>Receptor Sensitivity Rating Criteria</u> A= scenic quality rating of \geq 19; B = rating of 12 – 18,

 $C = rating of \le 11$

Scenic Quality Rating Questionnaire

KEY FACTORS	RATING CRITERIA AND S	CORE	
SCORE	5	3	1
Land Form	High vertical relief as expressed in prominent cliffs, spires or massive rock outcrops, or severe surface variation or highly eroded formations including dune systems: or detail features that are dominating and exceptionally striking and intriguing.		Low rolling hills, foothills or flat valley bottoms; few or no interesting landscape features.
Vegetation	A variety of vegetative types as expressed in interesting forms, textures and patterns.	Some variety of vegetation, but only one or two major types.	Little or no variety or contrast in vegetation.
Water	Clear and clean appearing, still or cascading white water, any of which are a dominant factor in the landscape.	Flowing, or still, but not dominant in the landscape.	Absent, or present but not noticeable.
Colour	Rich colour combinations, variety or vivid colour: or pleasing contrasts in the soil, rock, vegetation, water.	Some intensity or variety in colours and contrast of the soil, rock and vegetation, but not a dominant scenic element.	Subtle colour variations contrast or interest: generally mute tones.
Adjacent Scenery	Adjacent scenery greatly enhances visual quality.	Adjacent scenery moderately enhances overall visual quality.	Adjacent scenery has little or no influence on overall visual quality.
Scarcity	One of a kind: unusually memorable, or very rare	Distinctive, though somewhat similar to	Interesting within its setting, but fairly

	within region. Consistent chance for exceptional wildlife or wildflower viewing etc.	others within the region.	common within the region.
SCORE	2	0	-4
Cultural Modification	Modifications add favourably to visual variety, while promoting visual harmony.		Modifications add variety but are very discordant and promote strong disharmony.

14.3 Receptor Sensitivity

Sensitivity levels are a measure of public concern for scenic quality. Public lands are assigned high, medium or low sensitivity levels by analysing the various indicators of public concern. The following criteria were used to assess the sensitivity of each of the communities:

- **Public Interest:** The visual quality of an area may be of concern to local, state, or national groups. Indicators of this concern are usually expressed in public meetings, letters, newspaper or magazine articles, newsletters, landuse plans, etc. Public controversy, created in response to proposed activities that would change the landscape character, should also be considered.
- **Special Areas:** Management objectives for special areas such as natural areas, wilderness areas or wilderness study areas, wild and scenic rivers, scenic areas, scenic roads or trails, and Areas of Critical Environmental Concern (ACEC), frequently require special consideration for the protection of visual values. This does not necessarily mean that these areas are scenic, but rather that one of the management objectives may be to preserve the natural landscape setting. The management objectives for these areas may be used as a basis for assigning sensitivity levels.
- Adjacent Land Uses: The interrelationship with land uses in adjacent land can affect the visual sensitivity of an area. For example, an area within the viewshed of a residential area may be very sensitive, whereas an area surrounded by commercially developed lands may not be visually sensitive.
- **Type of User:** Visual sensitivity will vary with the type of users. Recreational sightseers may be highly sensitive to any changes in visual quality, whereas workers who pass through the area on a regular basis may not be as sensitive to change.
- Amount of Use: Areas seen and used by large numbers of people are potentially more sensitive. Protection of visual values usually becomes more important as the number of viewers increase (USA Bureau of Land Management, 2004).

Receptor Sensitivity Rating Criteria

The level of visual impact considered acceptable is dependent on the types of receptors.

- High sensitivity : e.g. residential areas, nature reserves and scenic routes or trails
- Moderate sensitivity : e.g. sporting or recreational areas, or places of work
- Low sensitivity : e.g. industrial, mining or degraded areas

Sensitivity Level Rating Questionnaire

FACTORS	QUESTIONS				
Type of Users	Maintenance of visual quality is:				
	A major concern for most users	High			
	A moderate concern for most users Moderate				
	A low concern for most users	Low			
Amount of use	Maintenance of visual quality becomes more im increases:	portant as the level of use			
	A high level of use	High			

	Moderately level of use	Moderate
	Low level of use	Low
Public interest	Maintenance of visual quality:	
	A major concern for most users	High
	A moderate concern for most users	Moderate
	A low concern for most users	Low
Adjacent land Users	Maintenance of visual quality to sustain ac	ljacent land use objectives is:
	Very important	High
	Moderately important	Moderate
	Slightly important	Low
Special Areas	Maintenance of visual quality to sustain S is:	pecial Area management objectives
	Very important	High
	Moderately important	Moderate
	Slightly important	Low

14.4 Key Observation Points (KOPs)

KOPs are defined by the BLM Visual Resource Management as the people located in strategic locations surrounding the property that make consistent use of the views associated with the site where the landscape modifications are proposed. These locations are used to assess the suitability of the proposed landscape modifications by means of assessing the degree of contrast of the proposed landscape modifications to the existing landscape, taking into consideration the visual management objectives defined for the area. The following selection criteria were utilised in defining the KOPs:

- Angle of observation
- Number of viewers
- Length of time the project is in view
- Relative project size
- Season of use
- Critical viewpoints, e.g. views from communities, road crossings
- Distance from property

14.5 VRM Classes

The landscape character of the proposed project site is surveyed to identify areas of common landuse and landscape character. These areas are then evaluated in terms of scenic quality (landscape significance) and receptor sensitivity to landscape change (of the site) in order to define the visual objective for the project site. The overall objective is to maintain a landscape's integrity, but this can be achieved at varying levels, called VRM Classes, depending on various factors, including the visual absorption capacity of a site (i.e., how much of the project would be "absorbed" or "disappear" into the landscape). The areas identified on site are categorised into these Classes by using a matrix from the BLM Visual Resource Management method as seen below, which is then represented in a visual sensitivity map

The BLM has defined four Classes that represent the relative value of the visual resources of an area:

- iv. Classes I and II are the most valued
- v. Class III represents a moderate value
- vi. Class IV is of least value

		VISUAL SENSITIVI			ITY L	EVEL	s				
			Hig	ıh		Mediu	um		Low		
	A (High)	Π	=	Ш	Π	II	Π	II	II	II	
SCENIC QUALITY	B (Medium)	II	Ш	III/ IV *	Ш	IV	IV	IV	IV	IV	
	C (Low)	Ш	IV	IV	IV	IV	IV	IV	IV	IV	
DISTANCE ZOI	NES	fore/middle ground	Background	seldom seen	fore/middle ground	background	seldom seen	fore/middle ground	background	seldom seen	

(A= scenic quality rating of ≥ 19 ; B = rating of 12 - 18, C = rating of ≤ 11) * If adjacent areas are **Class III** or lower, assign **Class III**, if higher, assign **Class IV**

Evaluation of the suitability of a proposed landscape modification is undertaken by means of assessing the proposed modification against a predefined management objective assigned to each class. The VRM class objectives are defined as follows:

- The Class I objective is to preserve the existing character of the landscape, where the level of change to the characteristic landscape should be very low, and must not attract attention.
 Class I is assigned to those areas where a *specialist decision* has been made to maintain a natural landscape.
- 6. The **Class II** objective is to retain the existing character of the landscape and the level of change to the characteristic landscape should be low. Management activities may be seen, but should not attract the attention of the casual observer, and should repeat the basic elements of form, line, colour and texture found in the predominant natural features of the characteristic landscape.
- 7. The **Class III** objective is to partially retain the existing character of the landscape, where the level of change to the characteristic landscape should be moderate. Management activities may attract attention, but should not dominate the view of the casual observer, and changes should repeat the basic elements found in the predominant natural features of the characteristic landscape.
- 8. The **Class IV** objective is to provide for management activities which require major modifications of the existing character of the landscape. The level of change to the landscape can be high, and these management activities may dominate the view and be the major focus of the viewer's (s') attention.

14.6 Photo Montages and 3D Visualisation

As a component in this contrast rating process, visual representation, such as photo montages are vital in large-scale modifications, as this serves to inform I&APs and decision-making authorities of the nature and extent of the impact associated with the proposed project/development. There is an ethical obligation in this process, as visualisation can be misleading if not undertaken ethically. In terms of adhering to standards for ethical representation of landscape modifications, VRM Africa subscribes to the Proposed Interim Code of Ethics for Landscape Visualisation developed by the Collaborative for Advanced Landscape Planning (CALP) (July 2003)(*Sheppard, S.R.J., 2005*). This code states that professional presenters of realistic landscape visualisations are responsible for promoting full understanding of proposed landscape changes, providing an honest and neutral visual representation of the expected landscape, by seeking to avoid bias in responses and demonstrating the legitimacy of the visualisation process. Presenters of landscape visualisations should adhere to the principles of:

- Access to Information
- Accuracy
- Legitimacy
- Representativeness
- Visual Clarity

Interest

The Code of Ethical Conduct states that the presenter should:

- Demonstrate an appropriate level of qualification and experience.
- Use visualisation tools and media that are appropriate to the purpose.
- Choose the appropriate level of realism.
- Identify, collect and document supporting visual data available for, or used in, the visualisation process.
- Conduct an on-site visual analysis to determine important issues and views.
- Seek community input on viewpoints and landscape issues to address in the visualisations.
- Provide the viewer with a reasonable choice of viewpoints, view directions, view angles, viewing conditions and timeframes appropriate to the area being visualised.
- Estimate and disclose the expected degree of uncertainty, indicating areas and possible visual consequences of the uncertainties.
- Use more than one appropriate presentation mode and means of access for the affected public.
- Present important non-visual information at the same time as the visual presentation, using a neutral delivery.
- Avoid the use, or the appearance of, 'sales' techniques or special effects.
- Avoid seeking a particular response from the audience.
- Provide information describing how the visualisation process was conducted and how key decisions were taken. (*Sheppard, S.R.J., 2005*).

14.7 Contrast Rating Stage

The contrast rating, or impacts assessment phase, is undertaken after the inventory process has been completed and the proposed landscape modification is assessed from the Key Observation Point. The suitability of landscape modification is assessed by measuring the Degree of Contrast (DoC) of the proposed landscape modification to the existing contrast created by the existing landscape. This is done by evaluating the level of change to the existing landscape in terms of the line, colour, texture and form, in relation to the visual objectives defined for the area. The following criteria are utilised in defining the DoC:

- None :The element contrast is not visible or perceived.
- Weak :The element contrast can be seen but does not attract attention.
- **Moderate** :The element contrast begins to attract attention and begins to dominate the characteristic landscape.
- **Strong** :The element contrast demands attention, will not be overlooked, and is dominant in the landscape.

As an example, in a Class I area, the visual objective is to preserve the existing character of the landscape, and the resultant contrast to the existing landscape should not be notable to the casual observer and cannot attract attention. In a Class IV area example, the objective is to provide for management activities which require major modifications of the existing character of the landscape. Based on whether the VRM objectives are met, mitigations, if required, are defined to avoid, reduce or mitigate the proposed landscape modifications so that the visual impact does not detract from the surrounding landscape sense of place.

14.8 VRM Terminology

The following terms were used in the Contrast Rating Tables to help define Form, Line, Colour, and Texture. The definitions were a combination of Microsoft Word Dictionary and simple description.

FORM	LINE	COLOUR	TEXTURE
Simple	Horizontal		Smooth
Weak	Vertical	Dark	Rough
Strong	Geometric	Light	Fine
Dominant	Angular	Mottled	Coarse
Flat	Acute		Patchy
Rolling	Parallel		Even

Draft Visual Impact Assessment: June 2013

VRM AFRICA

Undulating	Curved	Uneven
Complex	Wavy	Complex
Plateau	Strong	Simple
Ridge	Weak	Stark
Valley	Crisp	Clustered
Plain	Feathered	Diffuse
Steep	Indistinct	Dense
Shallow	Clean	Scattered
Organic	Prominent	Sporadic
Structured	Solid	Consistent

Simple	Basic, composed of few elements	Organic	Derived from nature; occurring or developing gradually and naturally
Complex	Complicated; made up of many interrelated	Structure	Organised; planned and controlled; with
complex	parts		definite shape, form, or pattern
Weak	Lacking strength of character	Regular	Repeatedly occurring in an ordered fashion
Strong	Bold, definite, having prominence	Horizontal	Parallel to the horizon
Dominant	Controlling, influencing the surrounding environment	Vertical	Perpendicular to the horizon; upright
Flat	Level and horizontal without any slope; even and smooth without any bumps or hollows	Geometric	Consisting of straight lines and simple shapes
Rolling	Progressive and consistent in form, usually rounded	Angular	Sharply defined; used to describe an object identified by angles
Undulating	Moving sinuously like waves; wavy in appearance	Acute	Less than 90°; used to describe a sharp angle
Plateau	Uniformly elevated flat to gently undulating land bounded on one or more sides by steep slopes	Parallel	Relating to or being lines, planes, or curved surfaces that are always the same distance apart and therefore never meet
Ridge	A narrow landform typical of a highpoint or apex; a long narrow hilltop or range of hills	Curved	Rounded or bending in shape
Valley	Low-lying area; a long low area of land, often with a river or stream running through it, that is surrounded by higher ground	Wavy	Repeatedly curving forming a series of smooth curves that go in one direction and then another
Plain	A flat expanse of land; fairly flat dry land, usually with few trees	Feathered	Layered; consisting of many fine parallel strands
Steep	Sloping sharply often to the extent of being almost vertical	Indistinct	Vague; lacking clarity or form
Prominent	Noticeable; distinguished, eminent, or well- known	Patchy	Irregular and inconsistent;
Solid	Unadulterated or unmixed; made of the same material throughout; uninterrupted	Even	Consistent and equal; lacking slope, roughness, and irregularity
Broken	Lacking continuity; having an uneven surface	Uneven	Inconsistent and unequal in measurement irregular
Smooth	Consistent in line and form; even textured	Stark	Bare and plain; lacking ornament or relieving features
Rough	Bumpy; knobbly; or uneven, coarse in texture	Clustered	Densely grouped
Fine	Intricate and refined in nature	Diffuse	Spread through; scattered over an area
Coarse	Harsh or rough to the touch; lacking detail	Diffuse	To make something less bright or intense